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CHAPTER 1

Introduction

Wireless devices have become ubiquitous these days with everyone using cellular

and other personal communication systems like second nature. Faced with the de-

mand for high bandwidth data and multimedia services along with the requirement

of high reliability, wireless communication system design has received a fresh injec-

tion of research interest with the focus on supporting higher data rates. Since the

bandwidth available for usage remains a scarce commodity, alternative approaches

(i.e. more efficient usage of bandwidth) have been taken to improve data rates and

satisfy these demands.

The techniques used to provide multiple uncorrelated versions of the transmit-

ted signal to the receiver to facilitate the realiable information transmission over a

fading channel are called diversity techniques. Some of the commonly used diversity

techniques are:

• Time Diversity: The information signal is repeated in different time intervals

separated by at least the coherence interval (see [[45]]) of the channel thus

producing uncorrelated repetitions of the information signal. This is a form

of repetition coding which is trivial. Another method of doing this is to use

non-trivial channel coding with time interleaving.

1
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• Frequency Diversity: Transmitting the signal on different carriers separated in

frequency by at least the coherence bandwidth (see [[45]]) of the channel produces

frequency diversity i.e. the transmitted signals undergo uncorrelated versions

of the channel in different frequency bands.

• Space Diversity: Multiple antennas can be used to improve the received sig-

nal strength and produce what is termed space diversity. Signals originating

from different antennas (spatially separated by multiples of the wavelength

of transmission) are independent, thus experiencing fades at different times

and frequencies, so that the combined signal has a lower probability of being

attenuated beyond recovery.

A simple explanation of the idea behind using diversity techniques is the following -

suppose p is the probability that a signal is attenuated beyond recovery, and suppose

there are L branches of diversity. Then the probability that all L signals are faded

beyond recovery is pL ¿ p. Wherever feasible, all possible diversity techniques

should be used for best performance.

One popular method for obtaining diversity has been to use multiple transmit

antennae and multiple receive antennae in the wireless systems, resulting in what

is known as Multiple Input-Multiple Output (MIMO) systems. Additionally, the

use of multiple antennas at the transmitter and the receiver has been shown to in-

crease capacity over that of single antenna systems also known as Single Input-Single

Output (SISO) systems. Thus MIMO systems (when used properly) are capable of

improving both capacity (higher data rates) and diversity (more reliability) for a

given application.

Although MIMO systems were known to improve diversity for a long time, it
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wasn’t until 1995 that the capacity improving feature of MIMO systems were dis-

covered in [[49]] and [[19]]. These works showed that the capacity of a MIMO system

utilizing M transmit and N receive antennae in fading channels with channel state

information (CSI) available at the receiver, but not available at the transmitter,

grows as min{M,N} log(SNR) at high signal-to-noise ratios (SNRs) [[49]]. This led

to an implementation called the Layered Space-Time Architecture in [[18]] and gave

birth to the topic of space-time codes. The term space-time code refers to the use of

channel codes on multiple-antenna systems where channel coding takes place along

the time dimension (so that time diversity is achieved) and across antennas, i.e.,

space dimension (so that space diversity is achieved). The above results are valid

under the assumption that the receiver has perfect channel state information (coher-

ent reception) i.e., the receiver (somehow) knows the exact realization of the fading

process while the transmitter has no knowledge of the CSI.

In practice, coherent reception means that the coherence interval of the channel

is large enough that a small portion of it can be used to send pilot symbols that

will aid the receiver in the explicit estimation of the channel parameters. When

this is not true, i.e., when the coherence interval is small, the receiver cannot es-

timate the channel path gains before they change to new, independent values. So

in this case, the receiver has to proceed without explicitly estimating the channel

parameters. This is called non-coherent reception. For the case of non-coherent re-

ception over a quasi-static MIMO block fading channel with coherence interval of T

symbols, [[34, 56]] proved that the capacity grows as M∗(1 −M∗/T ) log(SNR) with

M∗ = min{M, N, T/2} at high SNR.

This work deals with the problem of designing codes and receivers for the case

when both the transmitter and the receiver have no knowledge of the channel real-
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ization. The rest of this chapter contains a description of the channel and system

model and the notation used herein, followed by a discussion of the fundamental

results from the literature under the two paradigms mentioned above. Finally a

brief discussion of our contributions in the form of an outline of this dissertation is

presented.

1.1 System Description

1.1.1 Channel Model

Consider a wireless communication system in which the transmitter has M an-

tennas and the receiver has N antennas. At the transmitter, one complex signal is

transmitted from each of the M antennas simultaneously in one channel use. These

transmissions are collected in to the row vector1 x>t = [xt,1, . . . , xt,M ]. The transmis-

sion from each antenna undergoes Rayleigh fading independently of the others and

the receiver antenna j receives a noisy superposition of these Rayleigh faded signals.

The received signal at time t is modelled as follows:

yt,j =
M∑
i=1

xt,ihi,j + nt,j , j = 1, . . . , N, t = 1, . . . , T. (1.1)

Equivalently, collecting all the received values yt,j, j = 1, 2, . . . , N , into a row vector

y>t , we can write (1.1) as

y>t = x>t H + n>t , t = 1, . . . , T (1.2)

In (1.1), the coefficients hi,j represent the path gain from transmit antenna i to

receive antenna j. The path gains are modelled as independent samples of a complex

Gaussian random process with mean 0 and variance 0.5 per real dimension. This

is equivalent to saying that the absolute value of the path gain |hi,j| is Rayleigh

1Throughout this work, we use X, x, x>, x∗, and Tr(X) to denote matrices, column vectors,
vector transpose, conjugate transpose, and trace, respectively.
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distributed and the phase is uniformly distributed over [0, 2π). It is assumed that

these path gains are constant for one block of length T symbol periods and then

change independently to another realization. This is the block independent fading

assumption.

The noise process nt,j is a realization from a zero mean white complex gaussian

process with variance 0.5 per real dimension. The noise process is assumed indepen-

dent from the fading process and independent across time (t) and space (j).

The analysis is made convenient if a matrix channel equation is considered. The

matrix channel equation is formed by putting the observations of each antenna at

time t into a row vector y>t and stacking the T successive vectors as the rows of a

T ×N matrix Y. The resulting equation in matrix form is

Y = XH + N (1.3)

where X ∈ CT×M , H ∈ CM×N , and Y,N ∈ CT×N . The constellation is normalized

to obey the following power constraint:

E [Tr{XX∗}] = Tγs (1.4)

so that the average received signal to noise ratio at each receive antenna is γs ir-

respective of the number of transmit antennas M . At this point, the relationship

between the bit SNR (γb) and the symbol SNR (γs) is not considered to preserve

clarity. The bit SNR is calculated appropriately when coded systems are considered.

Through out this thesis, the channel is assumed to be unknown at the trans-

mitter. Also, unless otherwise mentioned, the path gains are considered unknown

at the receiver i.e. non-coherent reception. In the section that immediately fol-

lows, some fundamental results for MIMO systems, relevant to systems employing
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coherent/non-coherent reception are discussed so as to prepare the reader with suf-

ficient background to understand our contributions.

1.1.2 System Model

The specific communication system model we consider in this thesis for moderate

- to - fast fading channels, i.e., for T ≈ 5− 50, is explained via the block diagram in

Fig. 1.1. For very fast fading channels, it is emphasized that a different approach is

taken that is explained in Chapter 4. 1

Outer Turbo−Like Code

Soft
Info Demodulator/Estimator

Decision
Outer Code Decoder

Coded bitsInformation bits Space−Time Symbol Mapper

Fading Channel

Rc =
k

l
Rm =

l

T

Figure 1.1: Block diagram of the wireless communication system.

The transmitter consists of an outer binary turbo-like code of rate Rc = k
l

and

an inner space-time code that maps l coded bits into a space-time symbol spanning

T complex dimensions (or channel uses) i.e., Rm = l
T
, producing an overall rate

R = k
T

(bits per complex dimension). As an example, we use Low Density Parity

Check (LDPC) codes [[22]] for the purpose of simulations. The outer LDPC code

produces long codewords whereas the channel remains constant for a short duration

(T ≈ 5 − 50), so one binary codeword is encoded into multiple coherence blocks2.

2We thus obtain some time diversity.
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The receiver is an iterative receiver that consists of a demodulator/estimator block

and an LDPC decoder. Specific demodulator designs will be presented in Chapter 2;

we however mention that in the proposed receiver design, no explicit estimation

is performed at the demodulator. These two modules exchange soft information

regarding the reliability of the bits and after a preset number of iterations the decoder

outputs decisions on the bits.

In the sequel we present some background results concerning both coherent and

non-coherent multiple antenna communication systems that will serve the reader well

in understanding the discussion that follows in the rest of the dissertation.

1.2 Background on Multiple-Antenna Communication

1.2.1 Coherent Reception

Considering the scenario that the receiver has the channel state information, i.e.

coherent reception, we summarize the capacity results in [[49]] and the performance

analysis in [[48]]. The input-output relation (M transmit and N receive antennas)

assumed for the following discussion is the same as in (1.1) Since it is assumed that

the receiver has CSI, there is no merit in considering blocks of transmission. Rather,

we consider the vector equation representing the transmission in tth channel use

as in (1.2), where xt ∈ CM , H ∈ CM×N , yt,nt ∈ CN . The assumptions about the

components of H and nt are identical to those in Section. 1.1.1. The power constraint

on the transmitted signal xt is changed to3

E[‖xt‖2] ≤ γs (1.5)

such that the received SNR per receiver antenna (irrespective of the number of trans-

mit antennas) is γs.

3This reflects the transmission in a single channel use.
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Capacity Results

For a given channel known at the receiver (i.e., given H), the mutual information

between the output and the input signal is maximized when the input signal (xt) is

a circularly symmetric complex Gaussian with a covariance matrix Q satisfying the

constraint in (1.5). In this case the output signal is complex Gaussian as well, and

the mutual information is given by:

I(yt;xt) = log det(IN + HQH∗) (1.6)

Since the transmitter is unaware of the channel realization, the signal xt that achieves

capacity is complex Gaussian distributed with covariance matrix, Q = γs

M
I, which

means, equal power from each transmitter antenna. Thus, the capacity given the

particular channel realization at the receiver, is:

C = log det(IN +
γs

M
HH∗) (1.7)

This capacity is actually a random variable because it is dependent on the particular

realization of the random matrix H. The average capacity (averaged over the channel

statistics) is given by:

Caverage = EH[log det(IN +
γs

M
HH∗)] (1.8)

The evaluation of the average capacity is not easy for cases other than M = 1

and/or N = 1 but can be obtained in almost closed form (see [[49]] for the details).

From the average capacity, the following observations are made:

• Fixing M = 1, and varying N causes capacity to increase logarithmically with

N . For large N , the capacity asymptotically approaches log(1 + Nγs) in the

sense that the difference approaches zero.
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• Fixing N = 1, and taking M large, causes capacity to approach log(1 + γs).

• For M = N , there is a linear growth of capacity with M .

The above results hold for the case when the channel is ergodic. When the channel

is non-ergodic, since the Shannon capacity is zero, a meaningful approach to evalu-

ating the theoretical performance of this channel is to consider the capacity of the

channel that can be supported with some outage probability. The outage probability

is defined as the probability that the capacity of the channel is less than a specified

‘bit-rate’. This probability obviously depends on the channel statistics. Such an

approach was adopted by [[18]] and [[19]] and they demonstrated that the capacity (in

bits/s/Hz), at say 1% outage probability, grows linearly with the min{M,N} for a

given total transmitted power.

These results provoked a lot of work in this area and motivated the design of a

Layered Space-Time Architecture by [[18]] to exploit the vast capacities achievable

when using multiple-antennas.

Performance Analysis

While capacity analysis provides a theoretical maximum achievable bit-rate, for

practical system design, one is concerned with error probability performance analysis.

The authors of [[48]] considered the probability that a Maximum Likelihood (ML)

receiver decides erroneously in favor of the matrix symbol X′ = [x′t,i] instead of

X = [xt,i] (t = 1, . . . , T and i = 1, 2, . . . , M) assuming that the latter was the actual

signal transmitted and perfect CSI is available at the receiver to obtain the following

upper-bound (1.9) for the average pairwise error probability

Pr(X → X′) ≤
(

1∏M
i=1

(
1 + γsλi

4

)
)N

(1.9)
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where λi is the ith eigenvalue (arranged in descending order) of the matrix A defined

as A = ∆∆∗ in terms of the matrix ∆ = (X −X′)>. By construction rank(A) =

rank(∆). If r is the rank of ∆ then exactly r eigenvalues are nonzero and exactly

M − r eigenvalues are zero. For high SNR, (γs À 1) the following approximation

can be used:

Pr(X → X′) ≤



(
r∏

i=1

λi

) 1
r

γs

4



−rN

(1.10)

From the exponent of the signal-noise ratio, the conclusion is that there are rN

branches of diversity (i.e., a diversity advantage of rN) and from the multiplicative

factor there is a coding advantage of (
∏r

i=1 λi)
1
r . The maximum diversity advantage

achievable is MN and is achieved when r = M i.e., ∆ is a full rank matrix. (This

is under the assumption that M ≤ T , otherwise the maximum diversity advantage

would be TN .) This leads to the following design criteria:

• The Rank Criterion: In order to achieve maximum diversity advantage MN ,

the matrix ∆ has to be full rank for all pairs of signals X and X′ in the

signal constellation/codebook. If r is the minimum rank of ∆ over all pairs of

signals X and X′ in the signal constellation/codebook, then the actual diversity

advantage is given by rN .

• The Determinant Criterion: If r is the minimum rank of ∆ over all pairs of

signals X and X′ in the signal constellation/codebook, then the determinant

criterion advises that the minimum of the rth root of the sum of all determinants

of r × r principal cofactors of A over every pair of signals X and X′ in the

codebook should be maximized. This has the overall effect of maximizing the

coding advantage involved in (1.10).
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These design criteria when applied to the design of M = 2, full rank space-

time codes, produce the simple delay-diversity codes (see [[48]]) which are but a small

subset of full rank space-time codes. More general conditions for designing codes that

possess full diversity and good coding advantages with PSK modulation formats were

derived in [[25]].

1.2.2 Non-coherent Reception

In this paradigm, the assumption that the receiver knows the path gains is re-

moved. As in (1.3), the channel is represented as a M×N matrix and hence there are

MN complex path gains to be estimated by the receiver if it has to do coherent de-

tection. When the fading is fast i.e., T is small, (typical values being T ≈ 2−50), the

receiver cannot estimate the path gains with sufficient accuracy before the channel

changes again. The approach in this case is to detect the signals without explicitly

estimating the channel.

Capacity Results

The fundamental information theoretic results derived in [[28,34,56]] are summa-

rized below:

• The capacity for M > M∗ is equal to the capacity when M = M∗, where

M∗ = min{M, N, bT/2c}, i.e., there is no increase in capacity when the num-

ber of transmitter antennas M is increased beyond M∗. This is a significant

result that is unique for the non-coherent communication scenario. The ca-

pacity growth was also found to be linear in where M∗(1 − M∗/T ), while in

the coherent communication paradigm, the capacity had a linear growth in

min{M, N} irrespective of the length of the coherence interval.
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• The structure of the input signal that achieves capacity is X = ΦV, where Φ is

an isotropically distributed T ×M unitary matrix and V is a real non-negative

diagonal M × M matrix and Φ and V are independent. An isotropically

distributed unitary matrix is one whose probability density is unchanged when

it is left multiplied by any deterministic unitary matrix and for which Φ∗Φ = I.

• For M = N = 1, the capacity per dimension approaches the known channel

capacity asymptotically in T .

• For T À M or for T > M and γs À 1, setting V =
√

Tγs

M
I, achieves capacity,

i.e. X =
√

Tγs

M
Φ is capacity achieving. Such signal constellations are given the

name unitary space-time constellations.

The last observation above motivated the following (summary of) performance analy-

sis results [[28]] and the systematic design of unitary space-time constellations [[29]].

Unitary Space-Time Modulation and Demodulation

Consider a discrete constellation of unitary space-time signals are given by

Xl =

√
Tγs

M
Φl, l = 1, 2, . . . , S.

where Φl, l = 1, 2, . . . , S are T ×M complex unitary matrices.

The pairwise error probability (in decoding X2 when X1 was the actual trans-

mission) has the Chernoff upper bound

Pe ≤ 1

2

M∏
m=1


 1

1 + T 2γ2
s

M2

(1−d2
m)

4(1+Tγs
M )




N

(1.11)

This upper bound depends on the singular values 0 ≤ dM ≤ dM−1 ≤ . . . ≤ d1 ≤ 1, of

the M×M matrix Φ∗
2Φ1. The set of singular values represent the extent of correlation

between the subspaces generated by the columns of Φ1and Φ2. The pairwise error
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probability decreases with any di. From a further approximation of (1.11), the single

parameter that controls the performance of signal constellation4 was found to be

δ = max
l 6=l′

M∑
m=1

d2
m = max

l 6=l′
M‖Φ∗

l Φl′‖2. (1.12)

A good constellation has a small δ over all distinct pairs of signals Φl and Φl′ . A small

δ indicates a small correlation between constellation points - similar to maximum

Euclidean distance that guides the design of constellations for communication over

the AWGN channel. Therefore to generate good constellations, the following criterion

is used

min
constellations

δ = min
constellations

max
l 6=l′

M‖Φ∗
l Φl′‖2 (1.13)

A systematic and iterative procedure of generating unitary space-time constella-

tions [[29]] is as follows.

Φl = Θl−1Φ1 l = 2, 3, . . . , S. (1.14)

where Φ1 = 1√
T

times a T×M matrix whose columns are M distinct columns of a T×

T Discrete Fourier Transform (DFT) matrix and Θ = diag(eı 2π
S

u1 , eı 2π
S

u2 , . . . , eı 2π
S

uT ).

In practice, finding a good Θ i.e. finding the corresponding set {u1, u2, . . . , uT} so

as to to get the smallest δ, is done using a random search, as there is no systematic

way of doing the minimization yet. A couple of observations regarding this approach

are:

• The particular construction technique imposes a circulant nature on the set of

the correlations achieved by any constellation. This is very convenient, as it

reduces the number of correlations to check from S(S − 1)/2 to S − 1.

• The amplitude of each component of the T ×M matrix is equal to 1√
T
.

4at high SNR
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1.3 Dissertation Outline

This dissertation is organized as follows: Section 1.1 above contained the channel

model and the overall system architecture which is used in the remaining chapters.

In Chapter 2, we consider various receiver algorithms for the case of non-coherent

reception and propose a novel family of low complexity, near optimal (with respect to

ML performance) soft iterative demodulator for pilot assisted transmission schemes.

In Chapter 3, we characterize the capacity achieving signal distribution for the non-

coherent fading channel. Motivated by our information theoretic foray into capacity-

achieving distributions for these channels, a sophisticated transmission/detection

scheme is proposed in Chapter 4, that promises gains up to 1.8 dB for very fast

channels with minimal added complexity. In Chapter 5, the idea of joint design of

modulation and coding for the non-coherent fading channel is presented and pair-

wise probability of error analysis for codes that span multiple coherence intervals is

considered. Finally conclusions and directions for future work are summarized in

Chapter 6.

A brief outline of our contributions in each of the above chapters follows.

1.3.1 Receiver Algorithms and System Design for Fast Fading Channels

Based on the information theoretic result that isotropically distributed unitary

signals achieve the capacity of the block independent fading channel under some con-

ditions, systematic methods for the construction of isotropically distributed unitary

constellations were proposed in [[29]] and [[35]]. Recently, these signaling techniques

were investigated in conjunction with powerful outer codes in [[2]]. We note that these

systematically generated unitary constellations result from high SNR pairwise error

probability bounds and have no algebraic structure and hence large receiver com-
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plexity. With this observation, we researched the existence of better constellations,

at least in terms of complexity reduction.

Our contribution in this topic involves the identification of the well

known pilot symbol assisted modulation (PSAM) scheme as the modu-

lation of choice for this channel. We also propose and prove the merit

of a family of near-optimal low-complexity (compared to ML) joint esti-

mation/detection receiver for a wide range of modulations exemplified by

the PSAM scheme. We concluded that the PSAM scheme along with the

proposed low complexity receiver outperforms the designs in [[2]] in terms

of both bit-error-rate (BER) and complexity. This is a surprising result,

since one can usually improve one or the other, but not both performance

measures. The proposed low-complexity algorithm is also compared with popular

receiver algorithms namely the Expectation Maximization-EM algorithm [[9]] and a

soft version of the Sphere Decoder [[47]].

Given the choice of PSAM scheme, the simplest receiver performs pilot-assisted

non-iterative channel estimation followed by coherent decoding. This reception

scheme, which has been investigated extensively in [[20, 42]] is hereby referred to

as the Pilot-Only (PO) detection scheme. Another result in this work is the

proof of the equivalence between the PO scheme and an identical scheme

with perfect CSI at the receiver for MIMO systems. This equivalence

implies that analysis and code design for both problems is the same and

solving one provides the solution for the other system albeit at a different

signal-to-noise ratio. In other words, a system employing coding and pilot-assisted

estimation followed by decoding is equivalent to a degraded version of a system with

perfect CSI at the receiver.
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1.3.2 Capacity Achieving Signal Distribution

In [[34]], the unitary space-time constellations with a single amplitude were shown

to achieve capacity only at high SNR or when T À M . At low SNR, there are,

possibly, constellations that do better than unitary constellations. For instance, [[6]]

considered signal constellations with multiple energy levels and show that their per-

formance in terms of frame error probability is better than that of the unitary space-

time constellations.

To gain a better understanding of the theoretical limits of this channel, we in-

vestigated the channel capacity of this channel with the emphasis on identifying the

input signal distribution that achieves this capacity. In Chapter 3, we prove that

the amplitude of the isotropically distributed input signal that achieves

the capacity of the block Rayleigh faded channel, has bounded support.

Additionally, we show through an information theoretic analysis followed

by numerical evaluations that, starting from a single amplitude scheme,

introduction of a zero amplitude mass point increases the mutual informa-

tion. In other words, transmitting nothing (keeping the antennas silent)

for some portion of the time is a better strategy than transmitting all the

time. In certain cases the portion of time for which the antennas should be kept

silent can be quite significant. Although the analytical tools are developed for the

SISO case, it is conjectured that the same is true for the MIMO case. Very recently

(concurrent to this work), [[43]] showed that for the block fading channel, the capacity

achieving signal distribution comprises of unitary signals but with discrete amplitude

levels. A number of related results for the IID (independent and identically distrib-

uted) fading channel i.e. T = 1, and also the closely associated non-coherent AWGN

channel have appeared in literature [[14,39–41]].
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1.3.3 System Design for the Very Fast Fading Channel

For very fast fading channels where one is forced to operate at low SNR and low

rates, one can choose either to ignore any correlation between successive symbols

and operate as if the channel experiences independent fading (T = 1) at each time

instance or use the correlation between successive symbols and increase the achievable

rate. The first approach is a legitimate one if very low complexity implementations

are desired. However, as we show in Chapter 4, the potential loss for ignoring even

the small correlation which is present for very fast fading channels is significant.

Furthermore, from Chapter 3 and [[14,39–41,43]], there is ample evidence that a peaky

transmission in time (i.e., being silent for a significant portion of the transmission)

has potential performance benefits for various channels including the channel under

consideration. For instance, assuming that a fast fading channel can be adequately

modelled by a block-independent fading channel, we show that there is roughly 1.8 dB

to be gained by such peaky transmission for transmission rates of interest. Motivated

by this potential gain, we introduce a simple technique to obtain some of the

gain promised by information theory while adding minimal complexity to

the overall system.

1.3.4 Joint Modulation and Code Design

Although the observations made following (1.14) are inherent strengths of the

systematic constellation design technique, they might be restrictive when consid-

ered in conjunction with conventional codes5. Specifically the idea behind a joint

modulation and code design approach is to allocate resources so that there will be

maximum gain. A similar approach taken for the Additive White Gaussian Noise

5e.g. convolutional codes.
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(AWGN) channel, led to the construction of asymmetric PAM, PSK and QAM con-

stellations that showed some performance gain over the symmetric version.

Taking a cue from this, we consider the joint modulation and code de-

sign problem in Chapter 5, with the hope that when they are optimized

together, the performance might be better than that when code design

and modulation design are considered separately. To this end, the exact

pairwise error probability for coded systems spanning multiple coherence

interval blocks is analyzed in Section 5.3.



CHAPTER 2

Receiver Algorithms and System Design for Fast

Fading Channels

In this chapter, we consider various receiver algorithms for the case of non-

coherent reception and propose a novel family of low complexity, near optimal (with

respect to ML performance) soft iterative demodulator for pilot assisted transmission

schemes. In particular for pilot assisted modulations we consider designing receivers

with increasing degree of sophistication. The first one utilizes pilots at the trans-

mitter and a simple non-iterative channel estimation algorithm at the receiver. We

show that these systems are exactly equivalent, in terms of performance analysis and

design, to appropriately “degraded” systems having perfect CSI at the receiver. The

second scheme utilizes pilots and a well justified and simple suboptimal iterative

detection/estimation algorithm. It is shown that when turbo-like codes are con-

sidered in conjunction with this transmission scheme and receiver algorithms, the

optimized unitary constellations investigated in the literature are inferior to simple

pilot-assisted constellations. The performance of the proposed scheme is compared

with some well known receiver schemes such as a soft Expectation Maximization

(EM) algorithm and a soft iterative Sphere Decoder.

Early designs for the non-coherent fading channel were based on the work of [[34]]

19
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who proved that for the case of high SNR or T À M , signals that are isotropically

distributed and unitary (i.e., X∗X = (Tγs/M)IM achieve the capacity of a block

Rayleigh fading channel. Systematic procedures for generating these unitary con-

stellations [[29, 35]] involved pairwise error probability bounds for high SNR and the

asymptotic union bounds on the error probability. We refer to constellations gener-

ated by methods in [[29]] as systematically generated unitary constellations (SGUCs)

while the unitary constellations from [[35]] that were generated using the asymptotic

union bound (AUB) are referred to as AUB constellation. Before moving further, we

note that there are two basic disadvantages associated with these constellations: (i)

lack of structure, which means that an iterative demodulator has to sum over all the

possible signals in the constellations to produce bit reliabilities; (ii) the constellations

have been optimized with criteria that are valid at high SNR. However, when coded

systems are considered, other factors such as the number of “nearest” neighbors are

critical.

One might question the validity of using these constellations for the fast fading

scenario or for low rates and low SNR (as opposed to the constellations designed in [[5]]

for instance). These issues are deferred to the succeeding chapter and we continue

to use these single amplitude unitary constellations (SGUCs and AUBs) for the sake

of comparisons.

2.1 Pilot Symbol Assisted Modulation

The proposed constellations X ⊂ CT×M consist of 2l signals and the notation

X(b1, . . . , bl) is used to show the explicit mapping1 of the l = TRm bits to the

transmitted signal X.

1Recall the system model introduced in Section 1.1.2. The modulator rate is Rm = l
T bits per

complex dimension and so l = TRm bits map a symbol to a block.
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Assumption A: We impose some additional structure on X by assuming that

X> =
(
X>

pilot,X
>
data

)
(2.1)

The specific structure of Xpilot ∈ CM×M and Xdata ∈ CT−M×M will be described

in later sections as the need arises. We emphasize that although a pilot transmis-

sion followed by data transmission is proposed, and a simple non-iterative estima-

tion/detection receiver (PO detector) is a natural choice, we will also propose a novel

low-complexity near-optimal non-coherent demodulator in the sequel.

2.2 Receiver Algorithms

In this section, we present the details of the receiver that is comprised of the

demodulator and the LDPC decoder (see Fig. 1.1). The LDPC decoder uses the

standard sum-product algorithm based on the bit reliabilities received from the de-

modulator. This message passing algorithm is well discussed in literature and for

the sake of brevity will be omitted here.

The demodulator has to provide the decoder with extrinsic information regarding

the l = TRm bits. For each bit bi, i ∈ {1, . . . , l}, the demodulator generates a message

(in the logarithmic domain) of the form

Λi(b) = log
∑

b:bi=b

p(Y|X)p(b)− log pi(b) b ∈ {0, 1}, (2.2)

where p(b) =
∏l

i=1 pi(bi) are the a-priori probabilities generated by the LDPC de-

coder (initially set to 0.5 each), and the dependence of X on b is implicit.

The following subsections deal with the description of the various demodulators

that interface with the LDPC decoder.
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2.2.1 MAP detection for the Non-Coherent Fading Channel

For the case when CSI is not known at the receiver, (2.2) can be simplified to the

following under the assumption that X∗X = IM , ∀ X ∈ X

Λi(b) = log
∑

b:bi=b

exp

(
T Tr(Y∗XX∗Y)

N0(MN0 + T )

)
p(b)− log pi(b) (2.3)

Note that the expression in (2.3) involves summation over 2TRm/2 terms, thus imply-

ing O(TRm2TRm) complexity for the evaluation of all soft decisions. This complexity

can be quite prohibitive even for small blocklengths.

2.2.2 Pilot-Only (PO) Detector

With the modulation structure presented in Assumption A, as mentioned earlier,

the simplest detector is one that performs explicit estimation followed by “coherent”

detection. Such a detector is referred to as the PO detector in this thesis. In this

subsection, we analyze the statistics of the message that the PO detector provides

to the LDPC decoder. In the sequel we show that there is an equivalence between

PO detection and the ideal coherent detection under perfect CSI at the receiver.

For notational ease in the following analysis, we set the number of receive antennas

to N = 1. In this case, M of the T channel uses in X are utilized to transmit

pilot symbols to aid the receiver in performing channel estimation. Specifically, the

structure of the pilot and data part of X is set as follows (this is a specialization of

the structure in Assumption A)

X>
pilot =

√
γp IM , X>

data = (xM+1, . . . ,xT ), (2.4)

where γp represents the energy spent on the pilot symbol transmission. This implies

the following structure for the received signal

y> =
(
y>pilot,y

>
data

)
= ((y1, . . . , yM), (yM+1, . . . , yT )) . (2.5)
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Note that xi ∈ CM×1 is the vector of transmitted signals in the ith time instant. To

perform the following analysis, we make the additional assumption that

Assumption B: The total power radiated from all antennas at any time instant

during data transmission is constant, i.e., ‖xi‖2 = γd, i ∈ {M + 1, . . . , T}.

Energy considerations force the following relation between T , M , γp, γd and γs

Mγp + (T −M)γd = Tγs. (2.6)

The PO detector provides the likelihood information corresponding to vector xi,

based only on the observation yi and ypilot. Denoting ỹi = (y>pilot, yi)
>, the log-

likelihood function for the received signal conditioned on transmission of vector xi

(i ∈ {M + 1, . . . , T}) can be written as

qi,po = log p(ypilot, yi|Xpilot,xi) = log p(ỹi|X̃i)

= − log(πM+1 det(Ki))− ỹ∗i K
−1
i ỹi, (2.7)

where, Ki = IM+1 + X̃iX̃
∗
i and X̃i =

(√
γp IM ,xi

)>
. After some simplification

involving matrix inversion and determinant identities2, the above expression can be

reduced to

qi,po = C +
2
√

γp <( y∗i x
>
i ypilot)

1 + γp + γd

− γp |x>i ypilot|2
(1 + γp)(1 + γp + γd)

(2.8)

where the constant C is independent of xi.

2.2.3 Equivalence Between Pilot-Only and Perfect CSI Detectors

To analyze the perfect CSI detector, we remove the “no CSI at the receiver”

assumption and Assumption A and assign the following structure to the transmitted

2(A + BCD)−1 = A−1 −A−1B(C−1 + DA−1B)−1DA−1

det(I + AB) = det(I + BA)
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and received signal (again under the N = 1 receive antenna assumption)

X = (x1,x2, . . . ,xT )> (2.9)

y = (y1, y2, . . . , yT )>, (2.10)

i.e., the pilot part of the signal in (2.1) is also used to transmit information. Now

Assumption B is substituted by

Assumption B’: The total power radiated from all antennas at any time instant

is constant, i.e., ‖xi‖2 = γs, i ∈ {1, . . . , T}.

At the ith time instant, the conditional distribution of the received signal for a

given transmitted vector xi and a given channel realization h, is complex Gaussian

with mean x>i h and variance 1. Thus the log likelihood function can be written as

qi,c = log p(yi|xi,h) = − log(π)− |yi − x>i h|2

= C ′ + 2<(y∗i x
>
i h)− |x>i h|2. (2.11)

We now proceed with the proof of the equivalence between the PO and the perfect

CSI systems. First observe that in both (2.8) and (2.11), the constants C and C ′ do

not depend on xi, and thus they do not influence the overall calculation of the bit

reliabilities. Under the coherent case, defining zi,c
def
= x>i h, (2.11) can be rewritten as

qi,c = C ′ + 2< (y∗i zi,c)− |zi,c|2 . (2.12)

Similarly, for the PO detector, setting

y′i
def
=

√
1 + γp

1 + γp + γd

yi (2.13)

zi,po
def
=

√
γp

(1 + γp)(1 + γp + γd)
x>i ypilot (2.14)

(2.8) can be rewritten as

qi,po = C + 2< (y′∗i zi,po)− |zi,po|2 . (2.15)
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Given that xi was transmitted, the random variables yi and zi,c that determine the

statistics of the message qi,c in (2.12) are jointly complex Gaussian with mean 0 and

covariance matrix Ki,c given by

Ki,c =




1 + γs γs

γs γs


 . (2.16)

Similarly for the PO detector, under the assumption that xi was transmitted, the

random variables y′i and zi,po that determine the statistics of the message qi,po are

jointly complex Gaussian with mean 0 and covariance matrix Ki,po given by

Ki,po =




1 + γ′s γ′s

γ′s γ′s


 , (2.17)

with

γ′s =
γpγd

1 + γp + γd

(2.18)

Comparing equations (2.12), (2.16) with (2.15), (2.17), respectively, we conclude that

the messages qi,c and qi,po have exactly the same statistics but at different SNRs. In

particular, a PO system (with non-iterative estimation) with parameters γd and γp

is equivalent to a perfect CSI system with parameter γ′s given by (2.18). For more

than 1 receiver antenna, (i.e., when N > 1), the same equivalence holds since it is

clear that the messages qi,c and qi,po will be the sums of N independent terms of the

form (2.11) and (2.15), respectively.

This type of equivalence between the perfect CSI detection and the PO detection

schemes was initially shown through the computation of the actual message density

for M = N = 1 and assuming antipodal signaling in [[21]]. While the equivalence

is shown here through an examination of the statistics of the message exchanged in

an iterative decoding, a similar equivalence between PO detection and perfect CSI
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detection was shown in [[7]]. Also interesting to note is that the relationship (2.18)

comes up in the capacity lower bound evaluated in [[26]] showing the fundamental

nature of this result. An important implication of this equivalence is that analysis

for a given code can be performed once for the perfect CSI case; then for any PO

system with parameters γp and γd (or equivalently γp and γs) the performance can

be obtained from the corresponding perfect CSI system with γ′s given in (2.18).

Using (2.18) and (2.6), for a given γs it is easy to optimize γp, the pilot energy, so

as to get the largest γ′s. An equally important implication of this equivalence is that

code design for both these cases is unified: a code that is optimal for the perfect

CSI channel will also be optimal when no CSI is available at the receiver and PO

demodulation/detection is employed to generate the appropriate bit reliabilities that

will be fed to the decoder. For instance, degree optimization of an LDPC code need

to be performed only once assuming perfect CSI. If this code is optimal in the perfect

CSI scenario, it will also be optimal in the non-coherent scenario under PO detection,

with the only adjustment being the pilot energy allocation.

2.2.4 Soft Expectation Maximization Demodulator

The EM algorithm introduced first in [[9]] is widely used in many digital communi-

cations applications as a low complexity receiver with good performance. The details

of the EM demodulator are described below. The channel model for a SISO system

employing antipodal signalling is the same as (1.3) except it is specialized to the case

of SISO systems. The only fact we wish to reiterate is that γp (the pilot energy) and

γd (the average data symbol energy) are related as γp + (T − 1)γd = Tγs where γs

represents the average energy per transmitted symbol. While the final specializa-

tion of the results below applies to BPSK transmission, it is clearly easy to extend
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this method to other modulation alphabets and we provide the starting points from

which the relevant equations can be obtained for higher order modulations.

The EM algorithm is an iterative procedure itself and involves the computation

of a new channel estimate hk at the beginning of the kth, k = 0, 1, 2, . . . iteration.

The Expectation step or (E-step) calculation is carried out as follows

Q(h, hk) = Ex|y,hk
{log(f(y,x, h} (2.19)

= Ex|y,hk

{
−‖y − xh‖2

N0

− |h|2
}

(2.20)

= −|h|2 −
∑
x

N∑
i=1

|yi − xih|2P (x|y, hk) (2.21)

= −|h|2 −
N∑

i=1

∑
xi

|yi − xih|2P (xi|y, hk) (2.22)

= −|h|2 − ‖y‖2 −
N∑

i=1

∑
xi

(|xi|2|h|2 − 2<{y∗i xih}
)
P (xi|y, hk) (2.23)

where to get to (2.20), constants have been dropped.

The M-step involves maximizing Q(h, hk) with respect to h and setting the maxi-

mizing h as the channel estimate in the next iteration i.e. hk+1 = arg maxh Q(h, hk).

Differentiating Q(h, hk) with respect to h and setting it to 0, we find

hk+1 =

∑N
i=1

∑
xi
<{y∗i xi}P (xi|y, hk)

1 +
∑N

i=1 |xi|2
∑

xi
P (xi|y, hk)

(2.24)

Under the assumption that all signals in the modulation alphabet have equal energy

γd, we can simplify (2.24) as

hk+1 =

∑N
i=1 yi

(∑
xi

x∗i P (xi|y, hk)
)

Tγs + 1
(2.25)

In either case (equal or non-equal energy signalling), P (xi|y, hk) is calculated using

Bayes rule as

P (xi|y, hk) =
P (yi|xi, hk)P (xi)∑
xj

P (yi|xj, ck)P (xj)
(2.26)
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For the special case of BPSK transmission, we can further simplify (2.23) and (2.25)

by converting to the log-likelihood domain, i.e. setting

λ
(k)
i,soft = log

P (xi =
√

γd|y, hk)

P (xi = −√γd|y, hk)
(2.27)

λi,apriori = log
P (xi =

√
γd)

P (xi = −√γd)
(2.28)

and using (2.26), it is possible to rewrite (2.25) and (2.27) and can be re-written as

hk+1 =

√
γpy1

Tγs + 1
+

∑N
i=2

√
γd tanh(

λ
(k)
i,soft

2
)yi

Tγs + 1
(2.29)

λ
(k)
i,soft = 4

√
γd<{yih

∗
k}+ λi,apriori i = 2, . . . , T (2.30)

The EM algorithm is started by setting h0 as the channel estimate obtained from

the pilot symbol, namely h0 =
√

γp y1

Tγs+1
and then iterating between (2.30) and (2.29).

λi,apriori is set to 0 (corresponding to equally likely input) for the first time the

EM algorithm is used. Subsequently the LDPC decoder provides fresh values for

λi,apriori. From the spirit of the algorithm it is seen that each EM iteration serves to

improve the estimate of the channel from both the pilot and the data transmissions

and subsequently coherent detection with the updated channel estimate is carried.

Hence the EM-detector is expected to perform better than the PO detector which is

a non-iterative estimation/coherent detection algorithm.

For more bandwidth efficient modulations such as QPSK, QAM and PAM, the

simplifications from (2.24) to (2.29) and (2.30) do not apply and slightly more com-

plex equations result. In the sequel, the performance of the EM algorithm is com-

pared to the other algorithms discussed in this section for the case of BPSK and

Pulse Amplitude Modulation (PAM) signalling schemes on a SISO system.
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2.2.5 Soft Sphere Decoder

The sphere decoder is a well known algorithm that was originally designed to

search for the MAP estimate in an efficient manner. However recently with the pro-

liferation of soft iterative detection modules, a soft sphere detector is well motivated

and the details of the soft sphere detector are presented below.

The channel model and set up is identical to (1.3) and is omitted here. Note that

for the sphere decoder to have reduced complexity, the transmitted signals have to

belong to a subset of a lattice [[16]].

Converting the observation vector to the real equivalent form, we have

(
<{y} ={yi}

)

︸ ︷︷ ︸
Y

=



<{h} −={h}

={h} <{h}




︸ ︷︷ ︸
H

(
<{y} ={y}

)

︸ ︷︷ ︸
X

+

(
<{n} ={n}

)

︸ ︷︷ ︸
N

(2.31)

Due to the special nature of x, Y given x is normally distributed with mean 0

and covariance matrix 1
2
(xx∗ + IT ). The MAP detection rule for detection of the

transmitted sequence is as follows.

x̂MAP = arg max p(Y|X)p(X) (2.32)

= arg max log(p(Y|X)p(X)) (2.33)

= arg max
x>YY>x
Tγs + 1

+
T∑

k=1

log(P (xk)) (2.34)

= arg min
ρx>x− x>YY>x

Tγs + 1
−

T∑

k=1

log(P (xk)) (2.35)

= arg min
1

Tγs + 1
x>

(
ρIN −YY>)

︸ ︷︷ ︸
H

x−
T∑

k=1

log(P (xk)) (2.36)
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where ρ = Tr
(
Y>Y

)
3. Defining

µ(R,x)MAP def
=

x>Hx

Tγs + 1
−

T∑

k=1

log(P (xk)) (2.37)

and performing the Cholesky decomposition of H as H = R>R, where R is a real

upper-triangular matrix, we can rewrite the MAP detection rule as

x̂MAP = arg min µ(R,x)MAP = arg min
x>R>Rx

Tγs + 1
−

N∑

k=1

log(P (xk)) (2.38)

The extrinsic information (Le(k)) computation is as follows

Le(k) = Ls(k)− La(k) (2.39)

Ls(k) = log




∑
x̃|x̃k=+1 e

x̃>YY>x̃
Tγs+1

+log(P (x̃))

∑
x̃|x̃k=−1 e

x̃>YY>x̃
Tγs+1

+log(P (x̃))


 (2.40)

La(k) = log

(
P (xk = +1)

P (xk = −1)

)
(2.41)

Thus in the computation of Ls(k), instead of performing the metric computation

over all sequences in the code space, one can limit the computation to those terms

that contribute significantly to the exponent. In turn this means that only those

sequences that produce small metric in (2.38) need be searched over. The Fincke-

Phost algorithm or the sphere decoding algorithm is used to perform this, wherein

sequences that have

x>R>Rx

Tγs + 1
−

N∑

k=1

log(P (xk)) ≤ r2 (2.42)

for a suitably chosen r are stored and used. The structure of R allows an efficient

tree-search to be performed on the constellation. The choice of the radius r depends

in turn on the statistics of the RHS of (2.38).

Following [[47]], it is seen that xR>Rx>
T

is χ2 distributed with 2(T − 1) degrees

of freedom. Notice that the ML metric detection rule is closely related to (2.38),

3Doing this causes H to be a positive definite matrix and hence Cholesky decomposable.
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since it is obtained by omitting the second term from (2.38). It is thus possible to

determine a radius rk such that µ(R,x)ML = 1
Tγs+1

xR>Rx> < r2
k with probability

(1− εk) (let ε = 0.1 say). If no solution is found inside a sphere of radius rk, then k

is incremented by 1 and the search is repeated in a sphere of radius rk+1, where rk+1

is determined by a look up table of the χ2 distribution function. This goes on until

at least one solution is found so that the soft information can be calculated.

Note that for a given radius r, the second term in (2.38), being negative serves

to increase µ(R,x)ML. Thus if µ(R,x)MAP < r2, then µ(R,x)ML < r2. In other

words, for a given radius r, εML ≤ εMAP .

Clearly, this technique of identifying a subset of all possible transmissions and

performing the required marginalization on this set, decreases the complexity of

the receiver. However, at low SNR there is a chance that the actual transmitted

sequence is not in the set of sequences satisfying (2.42). This could give some loss

in performance. However at high SNR, this is unlikely to happen and the sphere

detector can be expected to achieve the performance of the MAP detector with

cubic complexity [[27]] with respect to TRm.

2.2.6 Near-Optimal Low-Complexity Iterative Receiver

Theoretical Background

Since in the PO scheme described earlier, non-iterative channel estimation/

detection followed by decoding is performed, it is expected to have poorer perfor-

mance relative to a receiver employing joint iterative estimation/detection. On the

other hand, the generation of optimal bit reliabilities as shown in (2.2) involves

summation over 2TRm−1 terms, thus implying O(TRm2TRm) complexity for the eval-

uation of all soft decisions. This complexity can be quite prohibitive even for small

block lengths. To bridge the gap between the optimal detector and the simple PO
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receiver, we observe that the high complexity of the MAP detector is due to the

lack of structure of the modulations proposed in [[29,35]] and attempt to address this

by considering PSAM schemes as in Assumption A with some additional structure

given below.

Assumption A1: Consider PSAM constellations with the following structure

X>
pilot =

√
γp IM , X>

data =

(
S>2 . . . S>t

)
(2.43)

where T = tM (T is assumed to be a multiple of M), and all matrices Si’s have the

same structure. These Si’s are referred to as sub-symbols in the sequel. Note that

the assumption T = tM is not restrictive since in reality one is faced with continuous

fading with some given dynamics. In such case, the block size T is a design parameter

that can be chosen as a multiple of M .

An example for the case of M = 1, is to transmit a constant first sub-symbol as

the pilot and consider a PSK based alphabet for the remaining data sub-symbols.

For systems employing multiple transmit antenna, some additional structure can be

used to obtain transmit diversity. As an example, for M = 2, T = 6, we use the

well known orthogonal space-time block code - Alamouti code [[1]] - structures for the

sub-symbols so as to obtain diversity gain. The symbol X consists of t = 6/2−1 = 2

Alamouti sub-symbols Si, i = 2, 3, each one of which is constructed from 2 PSK (or

QAM) signals ai and bi as follows

Si(ai, bi) = α




ai −b∗i

bi a∗i


 , (2.44)

where α is selected so that the power constraint is satisfied.
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Description of Algorithm

We now describe a family of near-optimal joint estimation and detection algo-

rithms for the approximate evaluation of the Λi(b) bit metrics in (2.2). The structure

assumed for the signal matrix in Assumption A1 is essential for the algorithm de-

scribed below to have linear complexity in T .

To aid the precise description of the algorithm, we introduce the well known

MAPSqD receivers for the coherent and the non-coherent Rayleigh block fading

channel, as follows

X̂(C) = p(b|Y,H)

= arg max
b

log p(b)− ‖Y −XH‖2

= arg max
b

log p(b) + 2
t∑

i=2

<{Tr{Y∗
i SiH}} − ‖XH‖2 (2.45a)

X̂(NC) = p(b|Y)

= arg max
b

Λ(X) (2.45b)

where, Λ(X)
def
= log p(b) + Tr{Y∗X(IM + X∗X)−1X∗Y} − log(det(IM + X∗X))

where the structure of Assumption A1 is used in (2.45a), and Y> = [Y>
1 ,Y>

2 , . . . ,Y>
t ],

with Yi ∈ CM×N . It is emphasized again that CSI is not available to the receiver

and the reason for introducing (2.45a) will be apparent in the description of the

algorithm.

The spirit of the algorithm (rather the family of algorithms) is captured in the

following statement.

Fact 2.1. The optimal maximum a-posteriori probability sequence detector [[37, 38]]

(MAPSqD) estimate (2.45b) for uncoded transmission of signals X ∈ X with the
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property that X∗X is independent of X over a non-coherent fading channel can equiv-

alently be found by

1. Turning the maximization problem in (2.45b) into the double maximization

problem

X̂(NC) = arg max
b

max
Ĥ

Λ(X, Ĥ) (2.46)

where Λ(X, Ĥ)
def
= log p(b) + ‖Y −XĤ‖2 − ‖Ĥ‖2

2. Partitioning the space of channels according to the system of equations

Λ(X1, Ĥ) = Λ(X2, Ĥ) X1 6= X2 ∈ X (2.47)

Note that the metric in (2.46) is decomposable into a sum of terms under

Assumption A1.

3. Taking one channel sample, say H̃i, from each set in the partition (obtained in

Step 2) and compute the set

T def
= {X̃i|X̃i = arg max

X
Λ(X, H̃i)} (2.48)

4. Finding the sequence in T that has the maximum non-coherent metric i.e.

X̂(NC) = arg max
X∈T

Λ(X) (2.49)

While the formal proof of Fact 2.1 is shown in great detail in [[38]], we provide

some explanation of this statement without delving into the details. The first step in

understanding this is that the maximization problem over the set of sequences can

actually be turned into a double maximization problem involving the channel real-

ization as well. The metric involved in this double maximization problem is closely
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related to the coherent MAP sequence detector (Step 1). By a simple change in the

order of the maximization, we find that for a given received vector, not all sequences

in the constellation are feasible under the coherent detection rule. This leads to a

partition of the channel space, such that all the channel realizations in a given parti-

tion always leads to a particular sequence in the constellation. The decomposability

of the signal constellation (Assumption A1) reduces the complexity of find this par-

tition of the channel space for a given received signal. Thus corresponding to the

partition there exists a subset of sequences in the constellation that can be proved

to be a sufficient set of sequences for the purpose of detection, in the sense that the

transmitted sequence is definitely in this set. The next step involves essentially per-

forming the maximization of the original non-coherent metric over the sufficient set

of sequences obtained above. The fact that this algorithm has polynomial complexity

in the sequence length is proved in [[38]].

Although Fact 2.1 has been stated for the case of uncoded sequences, for the coded

case employing iterative demodulation and decoding (similar to our assumptions in

Section. 1.1.2) when the demodulator is required to provide the outer decoder with

bit reliabilities, it is not necessary for the set of sequences determined from the

partition of the channel space to be sufficient. It is this observation that allows the

above algorithm to be used for the coded case as described below.

Fact 2.2. The soft decision metric for a symbol, i.e. λi = maxX∈X |Si
Λ(X), can

be obtained by finding maxX∈T |Si
Λ(X), where T is the set T augmented by symbol

flipped versions of the sequences in T in Fact 2.1.

The main steps in the demodulator of the low complexity receiver for a PSAM

transmission scheme that obeys Assumption A1, are as follows.
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1. Take Q samples of the channel space {H1, . . . ,HQ}.

2. Assuming that Hi is the channel realization obtain the MAPSqD estimates

X̂
(C)
i , i ∈ {1, . . . , Q}, using the coherent metric in (2.45a) and extract the

corresponding bit sequences b̂0
1, . . . , b̂

0
Q .

3. For each of b̂0
i , i = 1, . . . , Q, do the following

(a) Evaluate the non-coherent metric implied by (2.45b) for b̂0
i (recall that

b̂0
i is a bit vector of size l). Let λ0

i denote this metric.

(b) For each j = 1, . . . , l do the following

i. Flip the jth bit of b̂0
i resulting in the vector b̂j

i

ii. Evaluate the non-coherent metric implied by (2.45b) for b̂j
i , denoted

by λj
i .

4. At the end of step 3, there are exactly P = Q × (l + 1) bit vectors tested

b̂j
i , i = 1, . . . , Q, j = 0, . . . , l, with corresponding metrics λj

i , i = 1, . . . , Q,

j = 0, . . . , l. The final bit likelihoods are evaluated as follows.

For each k = 1, . . . , l do

Lk(b) = max
i=1,...,Q
j=0,...,l

b̂j
i,k=b

λj
i , (2.50)

where b̂j
i,k is the kth bit of b̂j

i .

Several comments are in order regarding the above algorithm. First, looking at

the operation of this algorithm, steps 1) and 2) generate a set of Q coherent can-

didate sequences based on hypothesized channel estimates {Hi}Q
i=1 and the coherent

MAPSqD metric in (2.45a). It is these steps that can benefit from the structured
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modulation schemes as given in (2.43), since for a hypothesized channel estimate H,

the maximization in (2.45a) can be performed with complexity T
M

2MRm instead of

2TRm that is required when using the generally unstructured constellations. It is thus

noted that this algorithm cannot be used effectively with the unstructured SGUCs

and AUBs.

The bit flipping process (steps 3a and 3b) has also been suggested in other prob-

lems (e.g., in [[44]]). In the present context though, this procedure has a strong the-

oretical justification since it is closely connected to an exact polynomial-complexity

algorithm for evaluating the bit-wise metrics implied by the min-sum algorithm [[31,

36, 37]]. In particular, it was shown in [[31, 36, 37]] that one can partition the space

CM×N of the unknown parameter H, using S hyperplanes into O(S2MN) polytopes

with the following property. If we sample one channel realization from each polytope

and perform steps 2) to 4), the exact soft metrics implied by the min-sum algorithm

can be obtained. Furthermore, the number of required hyperplanes grows only pro-

portionally with T , which implies an overall worst case polynomial complexity with

the coherence time T , regardless of the operating SNR. The details of this optimal

procedure are presented in [[37]]; this brief description is aiming at emphasizing the

strong theoretical justification of this family of algorithms.

Regarding the choice of Q we note that its value clearly controls the complexity

of the algorithm since the number of candidate sequences examined is directly pro-

portional to Q. The choice of Q is thus determined by complexity and performance

considerations.
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Choice of hypothesized channel samples

From Fact 2.1, the samples of the channel parameter Hi are to be chosen such that

they each lie on unique polytopes [[38]] in CM×N and thus lead to different candidate

sequences. But this would mean that the partition of the channel space be carried

out. To avoid this, one can choose samples based on the particular modulation used

as is illustrated in the following examples.

Example 2.3. Consider a SISO system with block length T employing pilot symbol

assisted BPSK transmission scheme. Let yi be the observation at the receiver for the

ith channel use. Consider the partition of the channel space (ĥ ∈ C), the boundary

of which is represented by

|yi − ĥ
√

γd|2 = |yi + ĥ
√

γd|2 (2.51)

Note that the LHS and RHS of the equation above are respectively the coherent

metrics corresponding to the transmission of
√

γd and −√γd respectively. A simple

manipulation gives us the equation for the line that performs the partitioning of the

channel space

<{yiĥ
∗} = 0 (2.52)

This can be done for each i = 1, 2, . . . T and the resulting lines can be plotted. For

even reasonably high SNR, the partition looks like Fig. 2.1. In Fig. 2.1, the dashed

lines are for different realizations of yi. For medium to high SNR, the lines are

concentrated along the perpendicular to yi. Thus in an effort to cover many distinct

polytopes without adding unnecessary complexity, 4 channel samples are placed on

axes rotated with respect to yi. However this would mean that the hypothesized

channel estimates vary with each channel use even inside a block. So to further
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Figure 2.1: Channel space partitioning for BPSK transmission and choice of the
channel samples for the proposed low complexity algorithm.
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simplify the algorithm, the channel samples are aligned with respect to the minimum

mean squared error (MMSE) channel estimate h̃. This can be compactly written as

ĥi = h̃e
 2π(i−1)

Q .

We now consider a more elaborate example of the procedure employed to choose

the samples, using a non-equal energy modulation alphabet such as the 4-ary PAM.

Example 2.4. Consider a SISO system with block length T employing pilot symbol

assisted 4-PAM transmission scheme. Again, let yi be the observation at the receiver

for the ith channel use. Consider the partition of the channel space (ĥ ∈ C), the

boundary of which is represented by

|yi − ĥx1|2 = |yi − ĥx2|2 (2.53)

where xi ∈ {±
√

γd

5
,±3

√
γd

5
}. When x1 and x2 have equal amplitude, a manipulation

of (2.53) leads to

<{yiĥ
∗} = 0 (2.54)

However, when x1 and x2 do not have equal energy, the partition is not described by

a line, but by a circle whose equation can easily be found as

∣∣∣ĥ− yi

4

∣∣∣
2

=
|yi|2
16

(2.55)

The circles and line defined by (2.54) and (2.55) partition the space of channels

into Fig. 2.2. Again with the intention of sampling as many unique polytopes as

possible, the channel samples are aligned with respect to yi. Due to noise however,

one would find many such circles and lines (shown in Fig. 2.2 as dashed lines and

dotted circles), all of them passing through the origin. To capture this random effect

due to the noise, the samples h2, h3, h5 and h6 are placed close to the perpendicular
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Figure 2.2: Channel space partitioning for 4-PAM transmission and choice of the
channel samples for the proposed low complexity algorithm.
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to yi and closer to the origin than h1 and h4. Note that the contour on which the

samples are placed is in the shape of an ellipse as opposed to the circle in Example 2.3.

The receiver’s performance has been observed to be very dependent on the placement

of these channel samples and hence requires optimization. To simplify matters, the

channel samples designed above, are aligned with respect to the MMSE estimate

of the channel so that they remain constant for each coherence block (as done in

Example 2.3).

We conclude this section by mentioning that the maximization operator in (2.50)

can alternatively be substituted by the “max∗” operator4. Finally, it should be clear

from the algorithm description that its overall complexity for the evaluation of all

l = TRm bit metrics at the demodulator is linear in T .

2.3 Design Examples

2.3.1 Receiver Comparison

We now compare the various receivers discussed above for the case of transmission

of pilot symbol assisted BPSK, QPSK and 4-PAM alphabets over a non-coherent

fading channel, employing single transmit and single receive antenna (SISO).

Pilot Assisted BPSK - SISO

We consider a channel with coherence time T = 11 and a SISO system employing

pilot symbol assisted (PSA) BPSK modulation. With one channel use devoted to a

pilot, the remaining 10 channel uses correspond to 10 data bits. The system employs

an outer rate 0.5, regular LDPCC with parameters (3, 6), so that the overall rate is

0.4545 bits per complex dimension. The receiver algorithms considered are the PO,

EM, soft sphere detector, the ML demodulator and the proposed fast algorithm. The

4max∗(x, y) = max(x, y) + ln(1 + exp(−|x− y|) = ln(exp(x) + exp(y))
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Figure 2.3: Receiver comparison for pilot assisted BPSK transmission in a SISO
system using a length 4000 (3, 6) regular LDPC code. The coherence
time is T = 11.
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number by the side of each performance curve in Fig. 2.3 is the normalized software

complexity5 of simulating that system. The PO receiver utilized optimal pilot energy

which was found through simulations (agreed with the predicted value from theory).

From Fig. 2.3, we see that as expected the EM-algorithm provides almost 1 dB

advantage over the PO receiver with only a marginal increase in complexity (1.55

vs. 1). The proposed fast algorithm employing the four channel samples as in

Example 2.3 provides almost 1.5 dB advantage over the PO detector and about 0.5 dB

over the EM-algorithm, but it does so at a complexity of 7.1 with respect to the PO

detector. However it is just 0.2 dB away from the ML-demodulator and the Sphere

Decoder, which have complexities 102 and 12.9 (at 6 dB) respectively. Note that the

sphere decoder’s complexity [[47]] depends closely on the operating SNR. At low SNR,

the sphere decoder is expected to collect more signals in a given radius than at high

SNR. Since the complexity is dependent on the number of sequences that are captured

in this set, the complexity is a function of SNR. This is illustrated through a plot of

the complexity comparisons between various receivers in Fig. 2.4. For instance, at an

SNR of 4.5 dB the sphere decoder’s complexity is 71. Overall, we conclude that the

proposed fast algorithm compares favorably in terms of performance and complexity

with respect to some popular choices of receivers for PSAM transmission scheme.

5The software complexity numbers were obtained by running a simulation of the system under
consideration and measuring the average CPU time taken to perform demodulation and detection.
These numbers have been normalized with respect to the complexity of a system having perfect CSI
(channel state information) or equivalently a system employing the PO receiver (since perfect CSI
receiver and PO receiver have identical complexity). The software complexity figures include the
code subgraph part and hence indicate the complexity in performing demodulation and decoding.
For a fair comparison all measurements were done for the same packet length and for the same
number of decoding iterations and on the same CPU and OS platform.
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Figure 2.4: Receiver complexity comparison for pilot assisted BPSK transmission
in a SISO system using a length 4000 (3, 6) regular LDPC code. The
coherence time is T = 11.
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Pilot Assisted QPSK - SISO

We now compare the proposed algorithm with the PO, EM and the ML receivers,

when using higher modulation alphabets for the sub-symbols such as the QPSK mod-

ulation. We considered a SISO system on a Rayleigh fading channel with coherence

time T = 5. The overall rate was 0.8 bits per complex dimension due to the use of

an outer regular (3, 6) LDPCC with length 4000. The performance of the various

receivers are shown in Fig. 2.5. From the figure it is apparent that the EM algorithm
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Figure 2.5: Receiver comparison for pilot assisted QPSK transmission in a SISO
system using a length 4000 (3, 6) regular LDPC code. The coherence
time is T = 5.

gains about 0.5 dB from the PO receiver while the proposed fast algorithm gains an-
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other 0.6 dB over the EM algorithm. The fast algorithm used Q = 6 channel samples

that were determined as hi = h̃e
 2π(i−1)

Q , i = 1, . . . , 6 where h̃ is the MMSE estimate

of the channel that is easily determined from the pilot transmission. In comparison,

the ML demodulator which has much higher complexity is just 0.2 dB better than

the proposed algorithm. Whether or not this extra complexity is warranted for the

sake of the 0.2 dB gain is a question that is answered best by the application that it is

intended for. Nevertheless the merit of the proposed algorithm in terms of achieving

good performance with low complexity is well illustrated through this example.

Pilot Assisted 4-PAM - SISO

Although the algorithm is described for equal energy signals, we show its applica-

bility for systems employing non-equal energy modulations such as PAM. Specifically

we consider a SISO system employing a length 4000 regular (3, 6) LDPCC and using

4-ary PAM modulation over a Rayleigh fading channel with coherence time T = 5.

Since each data sub-symbol carries 2 bits, the overall rate is 0.8 bits per complex

dimension. The various receivers compared are the proposed fast algorithm, the PO

detector, the EM-algorithm and the standard ML demodulator. All the algorithms

under comparison have to be modified to take into account the unequal energy be-

tween the signals. The performance of these receivers are shown in Fig. 2.6. The EM

algorithm gains about 0.6 dB over the PO detector, while the proposed fast algo-

rithm gains another 0.6 dB over the EM algorithm. Note that the fast algorithm is

actually 0.2 dB better than the ML demodulator. This was a surprising result since

in terms of the demodulator, the ML demodulator performance is actually better

than the proposed algorithm, but seemingly the statistics of bit reliability is better

suited for the outer code for the proposed algorithm. The channel samples for this
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Figure 2.6: Receiver comparison for pilot assisted 4-PAM transmission in a SISO
system using a length 4000 (3, 6) regular LDPC code. The coherence
time is T = 5.
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case required optimization (via simulation) and the channel samples were chosen

such the h1 and h4 had unit amplitude, while h2, h3, h5 and h6 had amplitude 0.1

(normalized with respect to the MMSE estimate of the channel - h̃). Also h2, h3, h5

and h6 were placed symmetrically about the perpendicular to h̃ and h2 was placed

at an angle of 62 degrees with respect to h̃.

The complexities of the various algorithms are indicated beside the correspond-

ing performance curve. Again we see that the proposed algorithm achieves a good

tradeoff between performance and complexity.

2.3.2 LDPCC Design

LDPC code design for all the examples shown below was done using the EXIT

chart [[50]] technique following the development in [[53]]. Fig. 2.7 shows the combined

transfer characteristics of the variable node decoder and the detector for various

values of dv, where the detector is the low complexity demodulator described in

section 2.2.6. The underlying system is a 2 × 1 channel with channel coherence

time T = 6 and QPSK with Alamouti modulation with overall rate 1 bit/ch.use.

The Eb/No for all these plots were fixed at 8.7 dB. It is noted that for dv = 1, the

combined detector and variable node decoder transfer function represents just the

detector’s transfer function.

As an example, the transfer characteristics of a code are plotted in Fig. 2.8. Also

plotted in the same figure is the average evolution of the mutual information quan-

tities during the actual simulation of the code at these signal to noise ratios. There

is some deviation between the tracking values and the predicted transfer function,

which we believe is due to the significant assumption about the Gaussian nature of

the messages. However our observation has been that these EXIT charts accurately
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describe the overall iterative decoder’s behavior as regards to whether or not the

decoding process converges.

It is seen that at 8.7 dB, the gap between the 2 exit curves is not sufficient

to allow the convergence of the iterative decoding process, but that at 9.2 dB, the

iterative process almost converges to (1, 1) implying nearly error free decoding. The

gap between the EXIT curves is called the EXIT tunnel.

Our goal is to optimize the variable and check node degrees so as to have conver-

gence in the iterative decoding process at the minimum γb possible (close to capacity).

From Fig. 2.8, it is seen that to have convergence of the iterative process it is nec-

essary to have a wider EXIT tunnel. Thus code design is done with a view to have

the widest EXIT tunnel at desired signal to noise ratio.

The constrained capacity of this system was evaluated and it was found that

Eb/No = 8.45 dB is required to support rate 1 bit/ch.use. Hence, LDPC code

optimization design was initiated conservatively at Eb/No = 8.7 dB. The performance

of the best code thus found is shown in Section 2.3.3 and beyond.

2.3.3 Example: Rate-1 system

In this example we consider a T = 6 channel and operate with 2 transmit and 1

receive antenna (M = 2,N = 1).

Perfect CSI and PO receivers

In order to investigate the performance limits of our receiver algorithms, we

considered a PO scheme with the first two complex dimensions used as a pilot and

the remaining 4 complex dimensions in the block used to transmit data. For diversity

gain, the Alamouti block code structure is used for the data sub-symbols. This is the

same construction outlined in the previous section. The same scheme is considered
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for the perfect CSI system where the pilot is replaced by another data sub-symbol.

The constituent signals in the sub-symbols come from a QPSK constellation. For the

PO system to have an over all rate of 1 bit per complex dimension, an outer code of

rate 0.75 is required. For this a rate 0.75 outer LDPC code was designed (optimized

using EXIT technique) for the perfect CSI scheme and its performance is plotted in

Fig. 2.9. Also plotted in the same figure is the performance of a PO receiver with the

same outer code designed above with γp

γs
= 1 (0 dB). Using the equivalence relation

in (2.18), it is easy to compute the optimal γp

γs
= 100.1 (1 dB). The performance of

a PO system with this optimal γp which is also plotted in Fig. 2.9 shows the same

improvement of 0.13 dB as predicted by theory.

The large gap between the perfect CSI performance and the PO receiver perfor-

mance as seen from Fig. 2.9 begs the use of more sophisticated non-coherent detectors

to bridge this gap.

SGUC, AUB and PSAM construction

For an overall rate of 1 bit per complex dimension, three modulation schemes are

considered - SGUC, AUB and the proposed PSAM. The first two are unstructured

unitary constellations.

System design for this case begins by first identifying the combination of outer

code rate and inner modulation rate so that the over all rate of 1 bit per complex

dimension is achieved. It should be noted that it is straightforward to design a 2l-

ary SGUC or AUB for an arbitrary l, while using a PSK/QAM constellation with

Alamouti puts a restriction on l. This is a disadvantage of using the PSAM structure.

To achieve a target rate of 1 bit per complex dimension and for the outer code

rate to be in a reasonable range, three choices of l were taken, namely l = 7, 8, 9. This
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Figure 2.9: Performance of Perfect CSI and PO receivers (with and without opti-
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is normalized to 1 for bench-marking complexity of subsequent schemes.
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leads to size 128, 256 and 512 constellations6. The corresponding outer binary LDPC

code rates are thus 6/7, 3/4 and 2/3 respectively. The low complexity receiver used

Q = 16 channel samples chosen as h ∈ {(ĥ1e
 2π(i−1)√

Q , ĥ2e
 2π(j−1)√

Q )>|i, j ∈ {1, . . . ,√Q}}

where ĥ = (ĥ1, ĥ2)
> is the MMSE estimate of the channel obtained from the pilot

symbol.

The performance of the SGUC and AUB constellations are shown in Fig. 2.10.

For each code rate/modulation pair two experiments were performed. The solid

curves in Fig. 2.10 refer to the performance of a system employing 1 demodulation

followed by 20 iterations of LDPC decoding. The dash-dash curves indicate the

performance of a system employing 5 iterations of demodulation and 20 iterations of

decoding (each iteration of the demodulator is followed by an iteration of the LDPC

decoder). The first conclusion to draw from Fig. 2.10 is that the AUB constellations

are better than the SGUC of corresponding size at each iteration by roughly 1 dB.

This is expected since AUB constellations are highly optimized and understandably

much harder to generate than the SGUC for arbitrary sizes. The software complexity

of each system (normalized by the complexity of the perfect CSI receiver) is shown

next to its performance curve. For the sake of clarity, since the software complexity

for 512-ary SGUC is identical to that of a 512-ary AUB, the complexity numbers are

mentioned once for each modulation size and iteration number. Observing that the

receiver complexity for a size 512 constellation is roughly twice the complexity of a

256-ary constellation it is interesting to note that the system with (Rc, 2l) = (3/4,

256) has the same performance as the (Rc, 2l) = (2/3, 512) system but with half the

6The SGUC constellations designed using the random search technique outlined in [[29]],
had the following parameters - 128 SGUC - (1,3) & (58,25,62,55,6,30), 256 SGUC - (1,5) &
(58,232,83,44,231,183), 512 SGUC - (2,4) & (97,406,247,368,389,502) where the first pair of num-
bers indicate the columns of the 6× 6 DFT matrix used to create the first signal, while the second
string of numbers indicate the rows of the 2l × 2l DFT matrix whose second column entries form
the entries of the Θ matrix. See [[29]] for details.
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complexity. As noted above AUB constellations are better than SGUCs and hence

we use only the 256 AUB constellation for further comparisons with the 256 QPSK

PSAM scheme. Also, all subsequent comparisons are made at a BER of 10−4.
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Figure 2.10: Tradeoff between performance and complexity through the choice of l.
Overall rate = 1 bit/ch.use.

In Fig. 2.11, the performance of the AUB and PSAM schemes, when operating

with 1,5 and 7 demodulation iterations and 20 decoding iterations are compared

(the PSAM scheme used in conjuction with the proposed low complexity receiver

is identical to the one used with the PO receiver in 2.3.3). It is seen that the first

iteration of the low complexity demodulator is better than the corresponding curve of

the AUB constellation by 0.7 dB. However for 5 and 7 iterations, the performance is
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comparable to the AUB. Indeed for 7 demodulation iterations, the AUB outperforms

the QPSK-PSAM by 0.2 dB. From the normalized software complexity of these

systems (indicated by the side of each performance curve), it is noted that such a

comparison in terms of fixed number of iterations does not take into account the

lower complexity of the receiver structure used for the PSAM scheme.

8 8.5 9 9.5 10 10.5 11 11.5 12 12.5 13
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

E
b
/N

o
 (dB)

B
E

R

256 AUB
256 QPSK PSAM
1 iteration
5 iterations
7 iterations

3.4 2.7 

8.6 

11.1 6.3 

8.1 

Figure 2.11: Comparison of performance of the QPSK/Alamouti PSAM vs AUB
constellations, with same number of demodulation iterations. (T = 6
channel with M = 2 and N = 1.) Q = 16 samples were used for the
low complexity algorithm.

To account for the receiver complexity, Fig. 2.12 shows the performance of these

three schemes with different number of iterations so that schemes with the same

complexity can be compared. In this figure, the numbers beside the curves indicate
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the number of demodulation iterations performed to achieve the complexity specified

by the legend. For a given complexity, it is possible to perform more demodulation

iterations for the PSAM scheme than for the AUB. At a complexity of 3.9, the

QPSK-PSAM with the low complexity algorithm outperforms the AUB by 2.2 dB,

while the performance gap decreases to 0.5 dB and 0.1 dB at complexity 6.2 and 11

respectively.
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Figure 2.12: Comparison of performance of the QPSK/Alamouti PSAM vs AUB
constellations, with same software complexity. (T = 6 channel with
M = 2 and N = 1.) Q = 16 samples were used for the low complexity
algorithm.

From Fig. 2.11 and Fig. 2.12, it might appear that there is only limited benefit

in using the PSAM scheme with the proposed low complexity receiver over the AUB
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constellation with optimal demodulation. However, this is only true due to the small

values of T and/or rate R considered in this example. It is important to note that the

utility of the PSAM construction will become apparent when the operating rate is

increased (for a fixed block length) or when the block length is increased (for a fixed

rate). This is expected since the complexity of demodulating the SGUC and AUB

schemes grows exponentially in T and R, while the complexity of PSAM with the

proposed receiver grows only linearly. An example illustrating the effect of increasing

the rate for the same block length T = 6 is shown in the following section.

2.3.4 Example 2: Rate-1.5 system

For the higher rate of 1.5 bits per complex dimension using 2 transmit and 1

receive antenna over a T = 6 channel, a nominal code rate of 3/4 was chosen for

the outer code and this necessitates the use of an inner modulation of size 4096.

Random search for a 4096 SGUC led to the use of the SGUC with the parameters

parameters (1,3) & (443,220,359,3605,1661,1750). At the time of these experiments

we did not have large enough AUB constellations to compare the performance of our

PSAM construction. A 4096 point PSAM scheme is constructed using an Alamouti

scheme with constituent signals coming from an 8-PSK constellation.

The performance curves of the low complexity demodulator for 1, 5 and 10 it-

erations are shown in Fig. 2.13. Also shown in Fig. 2.13 is the performance of the

4096 SGUC employing 1 and 5 demodulation iterations. The LDPC code is 8400

bits long. For the choice of Q = 36 (channel samples were chosen as outlined in the

previous example), it was seen that the software complexity of the low complexity

demodulator is 10.1 while that of the optimal demodulator for a 4096 size SGUC

is 37.7. Due to its severe complexity, the performance of the 4096 SGUC system is
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shown only for 1 and 5 iterations in Fig. 2.13.
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Figure 2.13: Performance of the 8-PSK/Alamouti PSAM scheme and the 4096-ary
SGUC over a T = 6 channel with M = 2 and N = 1. Q = 36 samples
were used in the low complexity algorithm.

In this high rate scenario, the PSAM scheme (with 1 iteration) outperforms the

SGUC with 1 iteration while being almost a factor of 4 less complex. Performing 5

demodulation iterations has a complexity of 19 and 127 for the PSAM and SGUC

respectively while the performance improvement is 1 dB. The low complexity demod-

ulator for the PSAM scheme allows performing 10 iterations with only a complexity

of 29 and this improves the performance over the 5 iteration curve by 0.6 dB.

We note here that AUB constellation of size 4096 has the same demodulation

complexity as the 4096 SGUC and even if the performance is better than the SGUC,
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the high complexity of the demodulator dictates that the PSAM scheme be used.

Fig. 2.13 also shows the performance of a PO receiver with the PSAM scheme. It is

noted that the new joint estimation/detection receiver provides an advantage of 2 dB

over the PO receiver. We note that PSAM schemes can be further improved by using

8-QAM signals instead of 8-PSK signals in the data sub-symbols. These examples

clearly demonstrate the utility of both the low complexity receiver proposed herein

and the PSAM schemes investigated widely in the literature.

2.3.5 Example 3: Rate-1.0 system in Continuous Fading

In this example we simulate a continuous fading channel using an auto-regressive

(AR) model7 with the pole at 0.99. This closely approximates a T = 6 channel since

there is strong correlation between channel realizations separated by 6 time instances.

Although the channel model was changed, the same receivers (which assume block

independent fading) were used in order to test their robustness in a continuous fading

regime. We report the simulated performance of the 256-ary AUB constellation and

the PSAM scheme (Q=16) from 2.3.3 on this channel in Fig. 2.14. With increasing

number of iterations, it is seen that the AUB gains about 1 dB over the PSAM

scheme.

We note that in a practical scenario, the structured nature of the PSAM con-

struction allows an optimization to be done over the block length chosen without any

change in the inherent modulation scheme, whereas SGUCs and AUB constellations

have to be generated from scratch if a new block length is chosen.

7h0 = w0,hn = 0.99hn−1 +
√

1− 0.992wn, n = 1, 2, 3, . . ., where wn is CN (0; IM ) distributed
and i.i.d over n.
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Figure 2.14: Performance of the QPSK/Alamouti PSAM scheme and the 256-ary
AUB constellation over a continuous fading channel, approximated by
a T = 6 block fading channel with M = 2 and N = 1. Q = 16 samples
were used for the low complexity algorithm.



CHAPTER 3

Capacity Achieving Signal Distribution

Chapter 1 introduced the capacity of the MIMO wireless channel under the two

cases of coherent and non-coherent reception. Particularly, in the non-coherent re-

ception paradigm, [[34, 56]] have shown that isotropically distributed unitary signals

with an independent amplitude factor achieve the Shannon capacity of this channel.

These works also showed that at high SNR, the amplitude of these signals has a

single probability mass point.

However many digital communications applications particularly in wireless, deep-

space and satellite communications operate in a power-limited regime where both the

spectral efficiency (in bits/s/Hz) and energy per bit are low. It is well known that

MIMO communication techniques would be wasted in this scenario since the capacity

gain afforded by MIMO systems is significant at high SNR. There is thus both an

academic and a practical reason for the interest in characterizing the capacity of a

Rayleigh block faded channel, especially since at low SNR (and equivalently, when

operating at low rates), neither the capacity nor the signal distribution that achieves

this capacity is known.

Recent literature indicates an increasing interest in this problem. Smith [[?]]

showed that for amplitude and variance constrained scalar gaussian channels,For

63
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a general class of fading channels, it was proved in [[43]] that when the input is con-

strained in such a way that E[‖x‖2+ε] ≤ a, (∀ε > 0) then the amplitude of the input

is a discrete random variable that takes on finite number of values. It was conjectured

that the result would hold for ε = 0 also. Subsequently in [[23,55]], the importance of

flash signaling for the case of peak limited Rician block faded channels as an optimal

signalling scheme for the wideband regime (low spectral efficiency) was established.

Very recently, the body of work in [[24]] indicates that with just an average power con-

straint for a Rayleigh block faded channel, the optimal input amplitude distribution

has bounded support.

Interestingly, the problem of characterizing the capacity achieving input distribu-

tion for the closely related non-coherent AWGN channel has been solved [[32,33,39]].

The optimal input amplitude distribution has been shown to be discrete and the

probability mass function has infinite number of mass points, one of which is always

at zero.

In the sequel we investigate the signal structure that achieves the capacity of

block-independent Rayleigh faded channel with only an average power constraint.

Consider a wireless communication system operating with one transmit and one

receive antenna, i.e. M = N = 1. The input-output relationship for the kth block is

given by (1.3) and the assumptions about the channel and the noise carry over from

Section. 1.1.1. Given x, y is complex gaussian with mean 0 and covariance matrix

K = IT + xx∗. The conditional density (after simplification using matrix identities)

is given by

p(y|x) =
1

(π)T (1 + ‖x‖2)
exp

(
−‖y‖2 +

y∗xx∗y
1 + ‖x‖2

)
(3.1)

We operate in a power limited communication system, so the power constraint im-
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posed on the signal distribution is given by (in accordance with (1.4))

E[‖x‖2] ≤ Tγs (3.2)

where γs denotes the average signal-to-noise ratio.

3.1 Signal structure that achieves capacity

The capacity is given by

C = sup
p(x),E(‖x‖2)≤Tγs

I(x;y) (3.3)

where, I(x;y) =

∫ ∫

︸︷︷︸
C2T

p(y|x)p(x) log
p(y|x)

p(y)
dxdy (3.4)

From [[34»Theorem 2]], we know that the capacity achieving signal has the structure

x = x̃ν, where x̃ is an isotropically distributed unit vector (i.e. a vector whose

density depends only on the direction and whose norm is 1) and ν is a real random

variable independent of x̃. Note that this is true even for the case T = 1. Thus the

density of x is related to the density of x̃ and the density of ν.

The following holds for all integer valued T . The density of a unit isotropically

distributed random vector x̃ is of the following form

p(x̃) =
(T − 1)!

πT
δ(‖x̃‖2 − 1) (3.5)

Similarly the density of an isotropically distributed random vector with amplitude ν

is

p(x|ν) =
(T − 1)!

πT ν2T−1
δ(‖x‖2 − ν2) (3.6)

Therefore the density of x is

p(x) =

∫

ν

p(x|ν)pν(ν)dν

=

∫

ν

(T − 1)!

πT ν2T−1
δ(‖x‖2 − ν2)pν(ν)dν (3.7)
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and it depends only the magnitude of x and not its direction, i.e., it is circularly

symmetric. In order to completely determine the structure of x, we only need to

determine pν(ν).

Lemma 3.5. For a circularly symmetric input x, the output y is also circularly

symmetric.

Proof. From (3.1), it is seen that for a deterministic unitary matrix Φ, p(Φ∗y|x) =

p(y|Φx). Hence

p(Φ∗y) =

∫

CT

p(Φ∗y|x)p(x)dx (3.8)

=

∫

CT

p(y|Φx)p(x)dx (3.9)

=

∫

CT

p(y|Φx)p(Φx)dx (3.10)

=

∫

CT

p(y|x)p(x)dx (3.11)

= p(y) (3.12)

and the lemma follows.

Lemma 3.5 implies that conditioned on x being circularly symmetric, y is also

circularly symmetric, i.e., it depends on the amplitude ‖y‖ only. We can therefore

write p(y) = 2T q(
√

2‖y‖) for some function q : R+ → R+, where the factor 2T

has been introduced as a normalizing factor. Using this and the conditional density

in (3.1), we simplify the inner integral with respect to y in (3.4) as follows.

3.2 Simplification of the Inner Integral

Define U as the unitary matrix with the first row equal to x∗
‖x‖ and the remaining

rows orthonormal to each other and to x. Making a change of variables to y =
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1√
2
U∗ỹ, where ỹ = [ỹ1e

θ1 , ỹ2e
θ2 . . . , ỹT eθT ]T , the inner integral with respect to y

in (3.4) becomes (after converting from rectangular to polar coordinates)

1

(2π)T (1 + ‖x‖2)

∫ ∞

0

. . .

∫ ∞

0

∫ π

−π

. . .

∫ π

−π︸ ︷︷ ︸
2T

exp

(
−‖ỹ‖

2

2
+

ỹ1
2‖x‖2

2(1 + ‖x‖2)

)

(
ỹ1

2‖x‖2

2(1 + ‖x‖2)
− ‖ỹ‖2

2
− log

(
(2π)T (1 + ‖x‖2)

)− log(q(‖ỹ‖))
)

ỹ1 . . . ỹT dỹT . . . dỹ1dθ1 . . . dθT (3.13)

We substitute ỹ2 = ‖ỹ‖2 =
∑T

i=1 ỹi
2 in place of ỹ2 and let

√
2‖x‖ = a, and integrate

over all remaining variables1 but ỹ and ỹ1, the above integral can expressed as (after

renaming ỹ and ỹ1 as y and y1 respectively)

∫ ∞

0

∫ y

0

yy1

(1 + a2

2
)(T − 2)!

(
y2 − y2

1

2

)T−2

exp

(
−y2

2
+

y2
1a

2

4(1 + a2

2
)

)

[
y2

1a
2

4(1 + a2

2
)
− y2

2
− log(q(y))− log

(
(2π)T (1 +

a2

2
)

)]
dy1dy (3.14)

It is easily verified that the term outside the square parenthesis integrates to unity

and identifying it as the joint density of y and y1 given a, i.e. as p(y, y1|a), (3.14)

can be written compactly as

− log

(
(2π)T (1 +

a2

2
)

)
+

a2

2(1 + a2

2
)

∫ ∞

0

∫ y

0

y2
1

2
p(y, y1|a)dy1dy

−
∫ ∞

0

∫ y

0

y2

2
p(y, y1|a)dy1dy −

∫ ∞

0

∫ y

0

p(y, y1|a) log(q(y))dy1dy (3.15)

Noticing that marginalizing p(y, y1|a) with respect to y1 yields the conditional

density of y given a as pT (y|a), while a similar process with respect to y yields the

1Note that
∫

. . .

∫

︸ ︷︷ ︸
ỹ∈CT−2,‖ỹ‖2≤y2−y2

1

dỹ = πT−2(y2−y2
1)T−2

(T−2)!
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conditional density of y1 given a as p1(y1|a) where2

pn(y|a) =
(1 + a2

2
)n−2

(a2

2
)n−1

ye
− y2

2(1+ a2
2 ) P

(
n− 1,

y2a2

4(1 + a2

2
)

)
(3.16)

P (n, x) =
γ(n, x)

Γ(n)
=

1

Γ(n)

∫ x

0

tn−1e−tdt = 1− en−1(x)e−x (3.17)

en(x) =
n∑

j=0

xj

j!
(3.18)

Lemma 3.6. With the conditional density pn(y|a) defined as in (3.16), we have the

following two identities

∫ ∞

0

y2pn(y|a) = a2 + 2n (3.19)

∫ ∞

0

y4pn(y|a) = 4n(n− 1) + 8(1 +
a2

2
)(n− 1) + 8(1 +

a2

2
)2 (3.20)

Proof. The proof of these identities is by straightforward integration – substituting

v in place of y2

2(1+a2

2
)

and interchanging the order of integration, it is easily seen

that (3.19) and (3.20) hold true.

Using Lemma 3.6, (3.15) is clearly equivalent to

− log

(
(2πe)T (1 +

a2

2
)

)
−

∫ ∞

0

pT (y|a) log(q(y))dy (3.21)

By a similar evaluation of integrals, it is seen that if we let y =
√

2‖y‖, then

p(y) = 2T q(y) =

∫ ∞

0

∫

CT

p(y|x)p(x|a)pa(a)dxda (3.22)

=
(T − 1)!

2πT y2T−1
2T pT (y) (3.23)

where pT (y) =
∫∞
0

pT (y|a)pa(a)da. Combinig (3.21) and (3.23), the mutual informa-

tion (3.4) achieved by an input amplitude density pa(a) over the block independent

non-coherent fading channel can be written as

I(pa(a)) =

∫ ∞

0

{
− log

(
1 +

a2

2

)
−

∫ ∞

0

pT (y|a) log

(
cT pT (y)

2y2T−1

)
dy

}
pa(a)da (3.24)

2using P (0, x) = 1.
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where cn = (2e)n(n− 1)!. Calling the expression inside the curly parenthesis Fpa(a),

the capacity of the channel thus becomes

C = sup
pa(a),E(a2)≤ 2Tγs

∫ ∞

0

Fpa(a)pa(a)da (3.25)

3.3 The I.I.D. fading channel

The channel model for this case becomes the complex scalar equation y = xh+n

where h and n are zero mean, unit variance independent complex gaussian distributed

random variables. The resultant transition density is

p(y|x) =
1

π(1 + |x|2) exp

( −|y|2
1 + |x|2

)
(3.26)

The capacity is given by

C = sup
p(x),E(|x|2)≤γs

I(x; y) (3.27)

= sup
p(x),E(|x|2)≤γs

∫ ∫

︸︷︷︸
C2

p(y|x)p(x) log
p(y|x)

p(y)
dxdy (3.28)

Following Lemma 3.5, we conclude that given that x has its phase uniformly distrib-

uted between 0 and 2π, the density of y depends only on its absolute value or length.

Equating p(y) = 2q(
√

2|y|), the inner integral in (3.25) can be simplified as follows

by using y = y1e
θ1 ,

1

π(1 + |x|2)
∫ ∞

0

∫ π

−π

y1e
− y2

1
1+|x|2

(
− y2

1

1 + |x|2 − log(π(1 + |x|2))− log(2q(
√

2y1))

)
dθ1dy1

= − log(2π(1 + |x|2))− 2

1 + |x|2
∫ ∞

0

y1e
− y2

1
1+|x|2

(
y2

1

N0 + |x|2 + log(q(
√

2y1))

)
dy1

= − log(2πe(1 + |x|2))− 2

1 + |x|2
∫ ∞

0

y1 exp

( −y2
1

1 + |x|2
)

log(q(
√

2y1))dy1 (3.29)

= − log(1 +
a2

2
)−

∫ ∞

0

y

1 + a2

2

e
− y2

2(1+ a2
2 ) log

(
c1p1(y)

2y

)
dy (3.30)

where (3.30) resulted from making the change of variables |x|2 = a2/2 and y2
1 = y2/2.

It is easily seen that (3.30) is equivalent to the intermediate result in [[15]].
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3.4 Characterizing the Input Density

3.4.1 Kuhn-Tucker Condition

The constrained optimization problem in (3.25) is easily turned into an uncon-

strained optimization problem using the theory of Lagrange multipliers. Using the

Kuhn-Tucker Theorem, it can be shown that the optimal input distribution p∗a sat-

isfies

Fpa(a) ≤ C + λ(a2 − 2Tγs) ∀a ≥ 0 (3.31)

with equality holding when a ∈ A, where A is the support set of p∗a. Using the

definition of Fpa(a), (3.31) can be written as

∫ ∞

0

pT (y|a) log

(
pT (y)

y2T−1

)
+ log

(
1 +

a2

2

)
+ log(

cT

2
) + C + λ(a2 − 2Tγs) ≥ 0

(3.32)

3.4.2 Bounded support

For the discrete memoryless Rician fading channel, it has been shown that under

an average input power constraint, the optimal input amplitude distribution has

bounded support [[24]]. We now extend this result to the case of block-independent

Rayleigh faded channels with the power constraint as in (1.4).

Theorem 3.7. For block independent Rayleigh fading channel with the average in-

put power constraint in (1.4), the optimal input amplitude distribution has bounded

support.

Proof. The proof is through contradiction. Assume that the input amplitude a has
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unbounded support. As in [[24]], we first lower bound pT (y)
y2T−1 as follows

pT (y)

y2T−1
=

1

y2T−1

∫ ∞

0

pT (y|a)p(a)da (3.33)

≥ 1

y2T−2

∫ ∞

M

(1 + a2/2)T−2

(a2/2)T−1
e
− y2

2(1+a2/2) P

(
T − 1,

y2a2

4(1 + a2/2)

)
p(a)da (3.34)

≥ 1

y2T−2
e
− y2

2(1+M2/2) P

(
T − 1,

y2a2

4(1 + a2/2)

) ∫ ∞

M

(
1 +

2

a2

)T−2
2

a2
p(a)da

(3.35)

=
1

y2T−2
e
− y2

2(1+M2/2) P

(
T − 1,

y2a2

4(1 + a2/2)

)
Kpa(M) (3.36)

where M can be chosen large enough that Kpa(M) is smaller than unity3.

Substituting this into the left-hand side (LHS) of (3.31), we can bound the LHS

of (3.31) as

LHS ≥
∫ ∞

0

pT (y|a) log

(
P (T − 1, y2M2

4(1+M2/2)
)

y2T−2

)
dy + log(1 +

a2

2
)

− 1

2 + M2

∫ ∞

0

y2pT (y|a)dy + log(
cT Kpa(M)

2
) + λ(a2 − 2Tγs) + C (3.37)

=

∫ ∞

0

pT (y|a) log

(
P (T − 1, y2M2

4(1+M2/2)
)

y2T−2

)
dy + log(1 +

a2

2
)

+ (λ− 1

2 + M2
)a2 + log(

cT Kpa(M)

2
)− 2Tλγs + C− 2T

2 + M2
(3.38)

The first term in (3.38) is negative ∀ a, since log

(
P (T−1, y2M2

4(1+M2/2)
)

y2T−2

)
< 0 ∀ y ≥ 0

and hence is upper bounded by 0. We next proceed to lower bound the first term

3It basically suffices that Kpa(M) be finite.
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in (3.38) as follows by first substituting u = y2/2,

G(a) =

∫ ∞

0

pT (y|a) log


 y2T−2

P
(
T − 1, y2M2

4(1+M2/2)

)

 dy (3.39)

=
(1 + a2/2)T−2

(a2/2)T−1
(T − 1)

∫ ∞

0

e
− 2u

2+a2 P

(
T − 1,

ua2

2 + a2

)
log(2u)du (3.40)

− (1 + a2/2)T−2

(a2/2)T−1

∫ ∞

0

e
− 2u

2+a2 P

(
T − 1,

ua2

2 + a2

)
log

(
P

(
T − 1,

uM2

2 + M2

))
du

(3.41)

≤ (1 + a2/2)T−2

(a2/2)T−1
(T − 1)

∫ ∞

0

e
− 2u

2+a2 log(2u)du (3.42)

− (1 + a2/2)T−2

(a2/2)T−1

∫ ∞

0

e
− 2u

2+a2 P

(
T − 1,

ua2

2 + a2

)
log

(
P

(
T − 1,

uM2

2 + M2

))
du

(3.43)

= −(1 + a2/2)T−1

(a2/2)T−1

(
γE − (T − 1) log 2 + log(

2

2 + a2
)

)
(3.44)

− (1 + a2/2)T−2

(a2/2)T−1

∫ ∞

0

e
− 2u

2+a2 P

(
T − 1,

ua2

2 + a2

)
log

(
P

(
T − 1,

uM2

2 + M2

))
du

(3.45)

where γE ≈ 0.577216 is the Euler-Gamma constant. The second term in (3.45)

(without the multiplicative factor) is lower bounded so that an upper bound on G(a)

is obtained. Note that for large enough M , uM2

2+M2 ≈ u. Since we are interested in the

behavior of this term for a →∞, we again make the approximation ua2

2+a2 ≈ u. Since

P (n, x) log(P (n, x)) is a continuous function, it is possible to write

P

(
T − 1,

ua2

2 + a2

)
log

(
P

(
T − 1,

uM2

2 + M2

))
= P (T − 1, u) log(P (T − 1, u))− ε

(3.46)

for some small ε > 0. Observing also that f(x) = x log(x), x ∈ [0, 1] achieves its
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minimum of −e−1 at x = e−1, the second term in (3.45) is lower bounded as

(1 + a2/2)T−2

(a2/2)T−1

∫ ∞

0

e
− 2u

2+a2 P

(
T − 1,

ua2

2 + a2

)
log

(
P

(
T − 1,

uM2

2 + M2

))
du (3.47)

≥ −(1 + a2/2)T−2

(a2/2)T−1
(e−1 + ε)

∫ ∞

0

e
− 2u

2+a2 du (3.48)

= −(1 + a2/2)T−1

(a2/2)T−1
(e−1 + ε) (3.49)

Thus, overall

(
2 + a2

a2

)T−1 (
γE − e−1 − ε− log(2T−1(1 +

a2

2
))

)
(3.50)

≤
∫ ∞

0

pT (y|a) log

(
P (T − 1, y2M2

4+2M2)
)

y2T−2

)
dy ≤ 0 (3.51)

and (3.38) can be written as

LHS ≥
(

2 + a2

a2

)T−1 (
γE − e−1 − ε− log(2T−1)

)
+

(
1−

(
2 + a2

a2

)T−1
)

log(1 +
a2

2
)

+ (λ− 1

2 + M2
)a2 + log(

cT Kpa(M)

2
)− 2Tλγs + C− 2T

2 + M2
(3.52)

Thus, when M is chosen large enough so that λ > 1
2+M2 , the right hand side

of (3.52) diverges to ∞ when a →∞ . This is a contradiction since from the Kuhn-

Tucker condition, the LHS of (3.31) is required to be zero infinitely often as a →∞.

Thus the optimal input amplitude is required to have bounded support.

3.4.3 Mass point at Zero

It has been conjectured [[43]] that with only a second moment constraint, the input

amplitude random variable namely a is mostly like discrete and has finite number of

mass points. As opposed to the high SNR regime, where single amplitude schemes

have been shown to achieve the capacity of this channel, we prove below that when

the input amplitude random variable a has mass at zero, the mutual information is

non-decreasing.
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Theorem 3.8. Under an average power constraint, for a block independent non-

coherent Rayleigh fading channel, starting from a single amplitude scheme, assigning

probability mass to a zero amplitude signal while maintaining the same average power,

does not decrease the mutual information.

Proof. The proof proceeds similar to the work in [[39]]. Let us assume an input

amplitude distribution specified by p = {0, 1} and a = {0, a}. This corresponds

to an input alphabet that has constant amplitude a. Now consider a second input

amplitude distribution that is obtained from the first by assigning some probability

mass to the zero amplitude, namely p(x) = {x, 1−x} and a(x) = {0, a√
1−x

} (x ≥ 0).

Note that the non-zero amplitude in a(x) has been increased so as to maintain the

same average amplitude a. Proof of the claim lies in verifying that I(a(x), a(x)) >

I(p, a). Referring to I(a(x), a(x)) as I(x) in the following, we prove that dI(x)
dx
|x=0 >

0.

After some simplification4 it follows that

dI(x)

dx

∣∣∣∣
x=0

= log

(
1 +

a2

2

)
− a2

2(1 + a2

2
)

− a2

2(1 + a2

2
)2

∫ ∞

0

f(y, a) log

(
cT pT (y|a)

2y2T−1

)
(3.53)

where

f(y, a) =

{(
y2

2
−

(
1 +

a2

2

)
− (1 + a2

2
)2

a2/2

)
pT (y|a)

+
(1 + a2

2
)2

a2/2
pT (y|0)− (T − 1)pT+1(y|a)

}
(3.54)

The first two terms of (3.53) is easily seen to be positive since it is of the form

log(1 + u) − u
1+u

which is positive for u > 0. Since it can be safely assumed that

4pT (y|a = 0) is obtained from p(y, y1|a = 0) by marginalizing y1, as y2T−1e−y2/2

2T−1(T−1)!
∀ y ≥ 0
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a > 0, it only remains to be shown that the third term in (3.53) is negative. Using

Lemma 3.6, it is easily verified that

∫ ∞

0

f(y, a)dy = 0 (3.55a)

∫ ∞

0

y2f(y, a)dy = 0 (3.55b)

Note that

cT pT (y|a)

2y2T−1
=

cT e−
y2

2

2(1 + a2

2
)
gT−1

(
y2a2

4(1 + a2

2
)

)
(3.56a)

where,

gn(x) = x−nexP (n, x) (3.56b)

Using (3.55), the third term in (3.53) can be rewritten as

∫ ∞

0

f(y, a) log

(
cT pT (y|a)

2y2T−1

)
=

∫ ∞

0

f(y, a) log

(
gT−1

(
y2a2

4(1 + a2

2
)

)
eλ+µy2

)
(3.57)

for any λ and µ. Observe that gn(x) is an increasing function in x, ∀n > 1. Note

that for any a > 0, there exist 2 positive numbers Y1 and Y2
5 such that f(y, a) < 0

for y ∈ (Y1, Y2) and f(y, a) > 0 otherwise. Choosing

λ =
Y 2

1

Y 2
2 − Y 2

1

gT−1

(
Y 2

2 a2

4(1 + a2

2
)

)
− Y 2

2

Y 2
2 − Y 2

1

gT−1

(
Y 2

1 a2

4(1 + a2

2
)

)
(3.58)

µ =

gT−1

(
Y 2
1 a2

4(1+a2

2
)

)
− gT−1

(
Y 2
2 a2

4(1+a2

2
)

)

Y 2
2 − Y 2

1

(3.59)

we can force f(y, a) and log

(
gT−1

(
y2a2

4(1+a2

2
)

)
eλ+µy2

)
to have opposite signs for all y

except at Y1 and Y2, where both are identically zero. This forces the integrand and

hence the integral in the third term (3.53) to be negative. Therefore, I(x) is shown

to be an increasing function of x at x = 0 and the theorem is proved.

5Without loss of generality, we can assume that Y1 < Y2
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3.5 Numerical Results

The simplifications of the mutual information expression to (3.24) allow us to

compute the constrained capacity of the SISO block fading channel numerically in

the following cases

1. Unitary Signal Constellations with Single Amplitude: Suppose a is a discrete

random variable that takes the value
√

2Tγs with probability 1. From (3.25)

and (3.24), we directly get the mutual information achieved by this input over

the channel (in nats) as

− log(1 + Tγs)−
∫ ∞

0

pT (y|a =
√

2Tγs) log

(
cT pT (y|a =

√
2Tγs)

2y2T−1

)
dy (3.60)

2. Unitary Signal Constellations with additional mass point at 0: Suppose a is a

discrete random variable that has two mass points, one at 0 (with probability

1 − α) and the other at A (with probability α). The amplitude A must sat-

isfy A2α = 2Tγs. The constrained capacity when using such an input signal

distribution becomes

−α log

(
1 +

Tγs

α

)

−
∫ ∞

0

(
αpT

(
y|a =

√
2Tγs

α

)
+ (1− α)pT (y|a = 0)

)
log

(
cT pT (y)

2y2T−1

)
dy

(3.61)

Numerical evaluation (using Mathematica) of (3.60) and (3.61) give the con-

strained capacities of unitary constellations and 2-mass point constellations respec-

tively. Through these numerical evaluations, the minimum information bit SNR (dB)

required to achieve a given rate (bits/channel use) has been calculated for block

lengths T = 1, 2, 3, 4 and the corresponding graphs are plotted below in Fig. 3.1.
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Figure 3.1: Minimum Eb/No dB required to achieve a certain rate for unitary and
isotropically distributed signals and for unitary and isotropically distrib-
uted signals augmented by the zero symbol (2 mass constellations) with
optimized probability of zero.
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It is also possible to numerically optimize the probability α that gives the maxi-

mum achievable rate for a given SNR. For block lengths, T = 1, 2, 3, 4, Fig. 3.2 shows

the probability of the zero symbol (found numerically) that maximizes the mutual

information. It is seen that the probability of the zero-symbol decreases with both

increasing SNR and increasing rate.
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Figure 3.2: Optimal Probability of using the Zero Symbol vs. Rate for short block
lengths, T ∼ 1− 4.



CHAPTER 4

System Design for the Very Fast Fading Channel

While it was shown in [[14]] and [[24]] that the capacity achieving signal distribution

for the symbol-by-symbol independent fading1 channel has some mass at zero. This

result is valid for all SNR values but is more pronounced at low SNR. In Chapter 3,

we proved a slightly weaker result that holds for block independent fading channels.

The result which was in two parts, says that (a) the optimal input is isotropically dis-

tributed, unitary and has an independent amplitude distribution that has bounded

support, and (b) starting from a single amplitude unitary scheme, introducing a zero

mass point to the input distribution increases the mutual information. Subsequently

numerical evaluation (Fig. 3.1) of the mutual information expression led us to con-

clude that for low rates (equivalently low SNR) and for very fast fading channels, the

use of modulation schemes that remain silent for a significant proportion of the time

is more power efficient than modulations that have signals with a single non-zero en-

ergy level2. We also computed the probability of zero symbol usage that maximizes

the capacity and plotted the same in Fig. 3.2. Interestingly, similar observations were

drawn for the closely related non-coherent (phase-noisy AWGN) block-independent

channel in [[39,41]].

1This holds for both Rician and Rayleigh fading channels
2for a given rate

79
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From these figures, it is apparent that for T = 2 and a target rate of 0.5 bits/c.d.,

using a signal constellation augmented by the zero symbol with the appropriate

probability of zero, it is possible to gain almost 1.8 dB over a system not utilizing

the zero symbol. For the T = 3 and T = 4 channels, this gain is around 1.0 and

0.6 dB respectively for the same target rate. Furthermore, it is clear that ignoring

the correlation between consecutive symbols incurs a significant loss. Indeed, at a

target rate of 0.5, the difference in the required Eb/N0 for a system with T = 1

and T = 2 is around 3 dB. These observations show a significant potential gain for

coding/modulation schemes that utilize constellations including the zero mass point.

Thus motivated, in the rest of this chapter, we propose a simple (and sub-optimal)

system for introducing the zero symbol in the constellation, that will enable us to

capture some of the potential gain.

4.1 Proposed Scheme

Consider frames comprising L coherence blocks. We choose to transmit zeros

in L0 ∈ {0, 1, . . . , L − 1} of them and unitary signals in the rest. This way we

achieve a zero mass point with probability p0 = L0/L. There are
(

L
L0

)
ways to

generate such configurations. This implies that there are exactly m0 = log2

(
L
L0

)
bits

that can be transmitted through the positions of the L0 zero blocks. The rest of

the information is transmitted through the unitary signal points. When L and L0

are small, one can generate the bit reliabilities in an optimal way, as in (2.2). We

note that the performance of this method and the complexity of generating the bit

reliabilities according to (2.2) increases with L. In fact for large L the number of bits

that are transmitted through the position of the zero blocks is exactly log2

(
L

p0L

) ≈

LH2(p0), where H2(·) is the binary entropy function. In order to accommodate
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large values of L with reasonable complexity, we present in the following a simple

transmission/reception scheme. In Fig. 4.1, the basic block diagram of the proposed

system is shown.

Code 2 

mode bits

regular bits

info

source

Code 2

Decoder

S/P

Code 1

Zero

Code 1

P/SParserModulator

decoded
mode bits

info

sink

decoded bits

decoded bits

zero stripped
observation vector

soft info

Demodulator/
Detector

Figure 4.1: Block diagram of system utilizing zero symbol.

The information sequence is split in two segments. One segment is encoded

using Code 1 as indicated in Fig. 4.1, and the resulting encoded bits determine the

position of zeros by determining which one of the
(

L
L0

)
configurations is transmitted.

The other segment is encoded by Code 2 and the encoded bits determine the unitary

signals transmitted in the L−L0 blocks. Fixing the target rate is Reff and the rates

R0 and R1 of Code 1 and Code 2 respectively, should satisfy the following equations

m0R0 + m1R1 = m0LTReff (4.1)

fraction of information bits assigned to Code 1 =
R0

LTReff

(4.2)

At the receiver, the observation vector is sent to a device called the zero-parser that

essentially compares the power received in the L blocks that make up the frame and

from the L0 lowest received power values, determines the configuration of the zeros in

the frame. This is the simplest and most naive method of determining the position

of the zeros. Having determined the output bits of Code 1, they are decoded by

the decoder of Code 1 to obtain the corresponding information bits (alternatively,
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one can generate sensible soft decisions (e.g., the L0 lowest power values from the L

blocks can be fed to the decoder). The L−L0 blocks left that correspond to non-zero

transmissions are decoded using the techniques presented in Chapter 2.2.

4.2 Analysis of Proposed Scheme

Upon receiving the observation vector, the zero-parser forms the statistic

zj =
T∑

i=1

|yi,j|2
T

, j = 1, . . . , L (4.3)

which is a measure of the power of the jth block. Under hypothesis H0 (zero trans-

mission occurred), zj has a chi-square distribution with 2T degrees and variance per

degree σ2
0 = 1/T and hence has a characteristic function Φzj

(s) = 1
(1−sσ2

0)T . Un-

der hypothesis H1 (non-zero transmission occurred), zj has a characteristic function

Φzj
(s) = 1

(1−sσ2
0)T−1(1−sσ2

1)
, where σ2

1 = 1
T

+ γs

1−p0
with γs = Reffγb.

The analysis of the capacity of such a scheme for general T , L and L0 is difficult

but for the case T = 2, L = 2 and L0 = 1, the analysis simplifies as follows (M =

N = 1 is assumed in the development for notational simplicity). For L = 2 and

L0 = 1, i.e. p0 = 0.5 the channel output can be thought of as the difference between

z2 and z1. Consider the case where the first block is used to transmit the zero point,

i.e. the configuration chosen was a [zero block, non-zero block] (denoted [0 1] for

simplicity). The characteristic function and the probability density function of the

difference z = z2 − z1 is given by

Φz|[01](s) =
1

(1 + sσ2
0)

2(1− sσ2
0)(1− sσ2

1)
(4.4)

f(z|[01]) =





σ2
0+3σ2

1

4(σ2
1+σ2

0)2
exp( z

σ2
0
)− 1

2σ2
0(σ2

1+σ2
0)

z exp( z
σ2
0
), z ≤ 0

σ4
1

(σ2
1−σ2

0)(σ2
1+σ2

0)2
exp(− z

σ2
1
)− 1

4(σ2
1−σ2

0)
exp(− z

σ2
0
), z > 0

(4.5)
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Similarly, the quantity f(z|[10]) can be found to be f(z|[10]) = f(−z|[01]). For

illustration, the probability density function of z given that the zero point was trans-

mitted in the first block while a unitary space time signal was transmitted in the

second block is plotted in Fig. 4.2. From simulations, the histogram of the same den-

sity was plotted and was found to be identical to the ones plotted in Fig. 4.2. From

the same it is seen that with increasing signal to noise ratio, Pr(z > 0) also increases

indicating that the statistic z that is formed by the zero parser is reasonable. The

question to be asked at this juncture is whether this system has capacity gains over

the traditional unitary signalling schemes.

To simplify notation, consider the output of this channel to be the log-likelihood

ratio

l
def
= log

f(z|[01])

f(z|[10])
= log

f(z|[01])

f(−z|[01])
(4.6)

The decoder of Code 1 can now operate with the soft inputs l and thus, Code 1

can be a powerful turbo-like code. The capacity of the equivalent channel seen

by the zero-parser can be easily evaluated numerically using (4.5) and is denoted

by C0(T, γs, L, L0) (in bits per complex dimension). Assuming that a long enough

codeword is transmitted, any rate below this capacity will result in a probability of

sequence error arbitrarily small. This means that with arbitrarily small probability

the zero-parser followed by the decoder will identify the positions of the zero blocks.

Once this is done, the zero blocks are stripped from the frames and decoding of the

remaining coded unitary transmissions is performed. The resulting overall capacity

(in bits per complex dimension) can be written as

Ctot(T, γs, L, L0) =
L− L0

L
C1pt(T,

γs

1− p0

) + C0(T, γs, L, L0) (4.7)

where C1pt(T, γs), the capacity of the single amplitude unitary constellation shown
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Figure 4.2: Likelihood function of z given transmission of zero in the first block and
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rate of 0.5 bits/complex dimension is assumed.
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in Fig. 3.1 via the dashed-dot curves. For a given γs, T , one needs to optimize over

L ∈ {2, 3, . . .} and L0 ∈ {0, 1, . . . , L − 1}. If the resulting capacity is larger than

Ctot(T, γs, L, 0) = C1pt(T, γs) and close to the two-mass-point capacity numerically

evaluated and shown in Fig. 3.1, then this simple transmission scheme is adequate.

4.3 Numerical Results

As an example of a practical scheme, we have numerically evaluated

Ctot(2, γs, 2, 1) when using a size 4 systematically generated unitary constellation for

the non-zero transmission. For comparison, we also numerically evaluated (through

Monte Carlo simulations) the capacity of a standard scheme using the same size 4

systematically generated unitary constellation. These results plotted in Fig. 4.3 show

that an γb = Eb/N0 = 8.27 dB is required to support 0.5 bits/ch.use for the proposed

system, while the standard system requires 9.25 dB to support the same rate. Thus

even in a practical system, there is a 1.0 dB advantage in using the proposed scheme.

For the very fast fading channel, a 1×1 channel with a coherence interval of T = 2

was considered. We observed through experiments that, the block independence of

the channel is not crucial to the performance of the receiver. This implies that the

schemes proposed in this chapter can be extended to the case of continuous fading

with almost no change in performance. It is noted however that this may not be a

good solution to the problem of combating continuous fading, since there is additional

reliability to be obtained about the bits transmitted in one block from the channel

observations in adjacent blocks.

From Fig. 3.2, we notice that the optimal probability of zero for a 2-mass system

over a channel with T = 2 is ≈ 0.6. Accordingly, we designed a system such that the

probability of the zero symbol is 0.5. The simplest possible choice of L = 2, L0 =
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1 guarantees that the probability of the zero symbol is 0.5 while allowing us the

opportunity to compare our results with analysis.

We fixed an overall rate of 0.5 bits/ch.use. The system employing a single ampli-

tude constellation, used an optimized3 rate 0.5 LDPCC (with 4000 information bits)

along with a 4 point SGUC across 2 complex dimensions. As shown in Fig. 4.4, this

system reaches 10−4 bit error rate at 10.35 dB.

For the sake of comparison, the number of information bits transmitted per code-

word was fixed at 4000. Hence 1333 information bits were transmitted through using

Code 1 with rate R1 = 2/3, while 2667 bits were transmitted through Code 2 with

rate4 R2 = 2/3. For the non-zero symbols, we used the same size 4 SGUC as men-

tioned above. This system reaches 10−4 bit error rate at 9.8 dB gaining 0.55 dB in

performance over the single amplitude system. However the predicted performance

gain at the target rate of 0.5 bits/complex dimension is 1 dB. We observe that the

choice of L = 2, L0 = 1 is a possible reason for not achieving the predicted gain. It is

expected that increasing L and L0 = p0L will improve the performance. Besides, the

fact that the receiver is inherently sub-optimal is another reason for the decreased

performance gain.

Nevertheless using the proposed simple scheme provides a gain of 0.55 dB without

any extra complexity and so has merit in practical applications.

3The code parameters are λ(x) = 0.237613x + 0.246978x2 + 0.193680x3 + 0.067187x7 +
0.124508x8+0.078134x13+0.051901x14, ρ(x) = 0.378314x5+0.607545x7+0.000298x8+0.013843x9.

4Code 1 had parameters λ1(x) = 0.365655x + 0.296262x2 + 0.084730x3 + 0.246900x7 +
0.006453x8, ρ1(x) = 0.073673x5 + 0.194008x7 + 0.150743x8 + 0.581577x9, while Code 2 had pa-
rameters λ2(x) = 0.265121x+0.485057x2 +0.023998x3 +0.031946x7 +0.105075x8 +0.045764x12 +
x13 + 0.043039x14, ρ2(x) = 0.071969x6 + 0.130419x7 + 0.090424x8 + 0.707188x9.
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CHAPTER 5

Joint Code and Modulation Design

5.1 Motivation for Joint Modulation and Code Design

As A lot of work has been done in the design of good signal constellations, for ex-

ample - [[28]], [[56]], [[29]], [[6]]. Also, in [[2]], trellis-coded unitary space-time modulation

codes have been designed using the best signal constellations created in [[29]], while

turbo coded unitary space-time modulation schemes for multiple antenna systems

were designed in [[3]] and [[46]]. Though the SGUC’s have many convenient strengths

(as mentioned in Chapter 1), it was our opinion that these modulations might be

restrictive when considered in conjunction with coding. Specifically the idea behind

a joint modulation and code design approach is to allocate resources so that there

will be maximum gain. However, till date, no effort has gone into the joint design of

modulation and code for the non-coherent block fading channel when using multiple

antennas. For the case of the AWGN channel, a joint approach to the design of mod-

ulation and code was taken in [[10–13]]. These works led to the design of asymmetric

signal constellations for trellis coded modulation on the additive white Gaussian noise

(AWGN) channel and gains were seen over the conventional systems. An approach

of this sort has merit because essentially it is shifting resources to places where they

are needed i.e., the code can be used to protect from bad (high) correlations while
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good (low) correlations can be made better and used where the code does not protect

it (parallel transitions).

The concept of joint modulation and code design is introduced in Section 5.2

with a simple, easy to visualize example of asymmetric QPSK constellations in trellis

coded modulations for the AWGN channel. This concept is then extended to the

design of asymmetric space-time codes for the fading channel and specific examples

are discussed in Section 5.4. In all our designs, we do not optimize the modulation

size S from the capacity viewpoint.

5.2 An example for the AWGN case

For a trellis coded modulation (TCM) system on the AWGN channel, the max-

imum likelihood sequence detector selects the sequence closest — in Euclidean dis-

tance sense — to the received sequence. For soft decision decoding of convolutional

codes and trellis coded modulation, the maximum likelihood sequence detector is es-

sentially the Viterbi algorithm used to minimize the sum of euclidean distances over

all possible trellis paths. As an example (from [[4»Sec. 5.6]]), let us take a 2 state,

rate 0.5 trellis coded modulation system using 4-PSK signals. The 4-PSK signals

and their labelling are shown in Fig. 5.1(a). The overall rate is 1 bit/channel use.

The output label assignments (based on the Ungerboeck partitioning [[54]]) for the

corresponding TCM scheme are shown in Fig. 5.2. For a general TCM system, the

bit-error probability has the upper bound (using the union bound):

Pb ≤
∑

l

d
(l)
h Nl Q




√
d2(e)

2N0


 . (5.1)

where Nl is the number of error paths of length l, d
(l)
h is the hamming weight of the

input sequence that produces the error sequence e of length l, and d2 is the Euclidean
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distance between the error sequence e and the 0 codeword. The values Nl, d
(l)
h and

d2 are usually obtained by finding the transfer function for the particular system

(see [[4]]).

The asymmetric 4-PSK constellation of Fig. 5.1(b) is obtained by rotating the

signals 1 and 3 counter-clockwise (by the same amount) such that the phase between

0 and 3 is θ. By this rotation the distance d1 between signals 0 and 1 is increased

at the cost of the distance d3 between signals 0 and 3. From this construction of

the asymmetric constellation, it is seen that any asymmetric 4-PSK constellation is

completely specified by the angle θ, where θ ∈ [0, π/2].

For the trellis shown in Fig. 5.2, the transfer function mentioned above is given

by

T (N, I,D) =
NI2Dd2

2+d2
1

1−NIDd2
3

(5.2)

=
∞∑

l=2

N l−1I lDd2
2+d2

1+(l−2)d2
3 (5.3)

∂T (N, I, D)

∂N

∣∣∣∣
N=1,I=1

=
∞∑

l=2

(l − 1)Dd2
2+d2

1+(l−2)d2
3 (5.4)

For the code of Fig. 5.2, the upper bound for the bit error probability (as a function

of the asymmetry angle θ) is obtained from (5.4) as:

Pb ≤
∞∑

l=2

(l − 1) Q




√
d2

1 + d2
2 + (l − 2)d2

3

2N0


 (5.5)

=
∞∑

l=2

(l − 1)Q




√
6 + 2 cos2(θ/2) + (l − 2)2 sin2(θ/2)

2N0


 (5.6)

=
∞∑

l=2

(l − 1)Q




√
8 + (l − 3)2 sin2(θ/2)

2N0


 (5.7)

At high SNR, the performance of the system is determined by the dmin, the

minimum Euclidean distance between a simple error path and the all 0 codeword.
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From Fig. 5.2, it is seen that for this output label assignment, the square of the

minimum Euclidean distance is d2
min = d2

2 +d2
1 = 4+2+2 cos2(θ/2) = 6+2 cos2(θ/2).

For the symmetric 4-PSK system (θ = π/2) the minimum distance is 6. However,

since 6 + 2 cos2(θ/2) ≥ 6 for θ ∈ [0, π/2], the trellis code with the modulation in

Fig. 5.1(b) is expected to perform better at high SNR. If we also take into account

longer error events, then it can be shown that for l ≥ 4, in the asymmetric case, the

performance deteriorates. Thus there must be an optimal θ. The optimum value of

θ can be found by minimizing the bit-error probability with respect to θ.

The upper bound is evaluated numerically from (5.7) and is shown for various θ

values in Fig. 5.3. There is an optimum θ at each SNR and as it can be seen, there

is a gain of 0.6 dB at high SNR (10−6 bit-error rate) with the use of θ = π/4.

Further, the approximation that the system performance is controlled only by the

minimum distance, motivates the following calculation of the asymptotic gain achiev-

able due to asymmetry. The distance d1 is maximum when signals 1 and 3 merge

with 2 and 0, respectively, i.e., θ = 0. Though this results in a catastrophic code,

it is an indication of the maximum gain achievable when asymmetric constellations

are used with the trellis code in Fig. 5.2. In this case d2
min,asymmetric = 8. Thus the

maximum gain is 10 log10(
d2
min,asymmetric

d2
min,symmetric

) = 10 log10(
8
6
) = 1.25dB. It is noted that the

performance at low SNR is determined not only by the minimum distance, but also

the next couple of terms in (5.7) and also the number of error paths at this distance.

Since the distance d3 is decreased in the asymmetric constellations, the next smallest

distances after dmin are lower than the corresponding ones in the symmetric case.

Therefore, at low SNR, the asymmetric TCM system is worse than the symmetric

TCM system. In order to get improved performance at high SNR, the performance

at low SNR is sacrificed.
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This potential gain in performance at high SNR is the motivation to design modu-

lation and code in a joint fashion for the fading channel. However there are significant

differences between the fading channel and the AWGN channel including the metrics

used by the Viterbi Algorithm. In order to understand the factors that control the

error performance, in the following we perform the exact pairwise error probability

analysis for various cases of M and N .

5.3 Exact Pairwise Error Probability Analysis

In the following, pairwise error probability analysis is done for the following

different cases

• M = N = 1, general signal structure with power constraint (1.4).

• M > 1, N = 1 using unitary space-time constellations.

• M, N > 1 using unitary space-time constellations.

• M = N = 1 but different energy levels allowed.

The analysis done here is for codes that span multiple coherence blocks and is to

serve as tools for the joint design of code and modulation for the space-time channel.

The analysis is different from the single block analysis done in [[28]]. Very recently

results similar in nature were published by [[35]].

5.3.1 Pairwise Probability of Error derivation (M = N = 1)

Consider the discrete time channel equation (1.3) specialized to the SISO channel.

We consider the transmissions in L blocks and index the received observation vectors

with k, where k denotes the block index (1 ≤ k ≤ L). The conditional density of yk

given xk is given by (3.1).
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Specializing to the case of equal energy signals i.e. ‖xk‖2 = Tγs. Consider Y to

be a LT × 1 matrix obtained by stacking the received vector in each of the L blocks.

Let X be the matrix form of the transmitted sequence over the L blocks. Since hk

changes independently from block to block and since the noise process nk is white,

the probability density function of Y given X can be written as

p(Y|X) =
L∏

k=1

p(yk|xk)

= π−LT (1 + Tγs)
−L exp

(
L∑

k=1

(
−‖yk‖2 +

y∗kxkx
∗
kyk

(1 + Tγs)

))
(5.8)

The maximum likelihood codeword receiver does the following: Choose X̂ as the

codeword transmitted if

X̂ = arg max
X

(
L∑

k=1

y∗kxkx
∗
kyk

)
(5.9)

= arg max
X

(
L∑

k=1

|y∗kxk|2
)

(5.10)

The probability of error in decoding X2 given that X1 was transmitted (pairwise

probability of error; denoted as Pr(X1 → X2) is given by

Pr(X1 → X2) = Pr

(
L∑
1

y∗k(x
2
kx

2∗
k − x1

kx
1∗
k )yk > 0|X1

)

Let W = {k : 1 ≤ k ≤ L,x2
kx

2∗
k 6= x1

kx
1∗
k } and |W | = dh denoting the Hamming

distance between the two sequences. Thus the above probability of error is

Pr(X1 → X2) = Pr

(∑

k∈W

y∗k(x
2
kx

2∗
k − x1

kx
1∗
k )yk > 0|X1

)

Let x1
k = x1∗

k yk and x2
k = x2∗

k yk. Thus

Pr(X1 → X2) = Pr

(∑

k∈W

(|x2
k|2 − |x1

k|2) > 0|X1

)

Obviously x1
k and x2

k are correlated complex gaussian random variables (because

they are linear combinations of the same jointly complex gaussian random variables).
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However, given X1, yk are independent over k so that x1
k and x2

k (k ∈ W ) are dh

independent and identical pairs of correlated random variables such that

E[x1
k|X1] = E[x2

k|X1] = 0

E[x1
kx

1∗
k |X1] = E[x1∗

k yky
∗
kx

1
k|X1] = x1∗

k (x1
kx

1∗
k + IT )x1

k = Tγs(Tγs + 1)

E[x2
kx

2∗
k |X1] = E[x2∗

k yky
∗
kx

2
k|X1] = x2∗

k (Tx1
kx

1∗
k + N0IT )x2

k = Tγs(Tγs|ρk|2 + 1)

E[x2
kx

1∗
k |X1] = E[x2∗

k yky
∗
kx

1
k|X1] = x2∗

k (Tx1
kx

1∗
k + N0IT )x1

k = Tγsρk(Tγs + 1)

where ρk =
x2∗

k x1
k

Tγs
. Thus,

E







x2
k

x1
k




(
x2

k
∗

x1
k
∗

)
∣∣∣∣∣∣∣
X1


 =




Tγs(Tγs|ρk|2 + 1) Tγsρk(Tγs + 1)

Tγsρ
∗
k(Tγs + 1) Tγs(Tγs + 1)




Let the random variable z be defined as

z : =
∑

k∈W

zk =
∑

k∈W

(|x2
k|2 − |x1

k|2)

By finding the characteristic function of zk and multiplying over k we can get the

characteristic function Φz(s) of the random variable z.

The characteristic function of (|x2
k|2 − |x1

k|2) is found as

Φzk
(s) = E[exp(−s(|x2

k|2 − |x1
k|2)]

=

∣∣∣∣∣∣∣
I2 + s




Tγs(Tγs|ρk|2 + 1) Tγsρk(Tγs + 1)

Tγsρ
∗
k(Tγs + 1) Tγs(Tγs + 1)







1 0

0 −1




∣∣∣∣∣∣∣

−1

=
−1

T 2γ2
s (Tγs + 1)(1− |ρk|2)

[(
s + 1

2(Tγs+1)

)2

− µ2
k

]

=
−1

Ak(s− qk)(s + pk)
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where

Ak = T 2γ2
s (Tγs + 1)(1− |ρk|2) (5.11)

µ2
k =

1

4(Tγs + 1)2
+

1

T 2γ2
s (Tγs + 1)(1− |ρk|2) (5.12)

qk = µk − 1

2(Tγs + 1)
(5.13)

pk = µk +
1

2(Tγs + 1)
(5.14)

and the ROC is given by −pk < <{s} < qk.

The probability density function of z can be found by inverse Laplace transform-

ing the characteristic function of z. Since we are interested in Pr(z > 0), we get for

z > 0,

f(z) =
∑

l∈W

Ress=−pl

{
esz

∏

k∈W

−1

Ak(s− qk)(s + pk)

}

The residue can be easily evaluated for the 2 cases — (i) when each |ρk| is different

from the other and (ii) when |ρk| = ρ ∀ k ∈ W .

Case (i) Each |ρk| < 1 is different from the other

In this case the density of z for z > 0 is

f(z) =
∑

l∈W

e−plz

Al(pl + ql)

∏

k∈W,k 6=l

1

Ak(qk + pl)(pk − pl)

The probability of error is evaluated as

Pr(X1 → X2) =

∫ +∞

0

f(x)dx =
∑

l∈W

1/pl

Al(pl + ql)

∏

k∈W,k 6=l

1

Ak(qk + pl)(pk − pl)

=

(∏
j∈W

1

Aj

) ∑

l∈W

(
1/pl

(pl + ql)

∏

k∈W,k 6=l

1

(qk + pl)(pk − pl)

)

=
(T 2γ2

s (Tγs + 1))−dh

∏
j∈W (1− |ρj|2)

∑

l∈W

(
1

2µ2
l + µl

Tγs+1

∏

k∈W,k 6=l

1

µ2
k − µ2

l

)
(5.15)

=
1

T 2γ2
s

∑

l∈W

(1− |ρl|2)dh−2

2(Tγs + 1)µ2
l + µl

∏

k∈W,k 6=l

(|ρk|2 − |ρl|2)−1 (5.16)
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Case (ii) |ρk| = ρ < 1 ∀ k = 1, 2, ..., L

Since all |ρk| = ρ for k ∈ {1, . . . , L}, Ak = A, µk = µ, pk = p and qk = q for

k ∈ {1, . . . , L}. The probability of error in this case is

Pr(X1 → X2) =

(
1

4Aµ2

)dh dh∑
j=1

(
2dh − 1− j

dh − 1

)(
p + q

p

)j

=

[
Tγs + 1

T 2γ2
s (1− ρ2) + 4(Tγs + 1)

]dh

dh∑
j=1

(
2dh − 1− j

dh − 1

) 
 2

√
1 + 4(Tγs+1)

T 2γ2
s (1−ρ2)

1 +
√

1 + 4(Tγs+1)
T 2γ2

s (1−ρ2)




j

(5.17)

5.3.2 Pairwise error probability for Multilevel signal constellations (M =
N = 1)

An interesting problem is to generalize the above probability of error expressions

for the case when the energy per coherence interval is not restricted to be equal in all

blocks. In this case the decoder’s decision rule will change and the derivation above

has to be redone.

Consider the case when the signal energy in a block can be one of two levels,

one of which is 0 and other non-zero. Assuming that the proportion of the number

of zero energy blocks to the number of non-zero energy blocks is fixed, say p0, we

can set the non-zero energy level to be Tγs

1−p0
, so that the average energy over time

is Tγs. With this assumption, we can simplify the maximum likelihood decision

rule by canceling the multiplicative factors outside the exponential term in (3.1).

The pairwise probability of error for such a receiver in decoding sequence X2 when
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actually sequence X1 was transmitted is given by the expression

Pr(X1 → X2) = Pr

(
L∑

k=1

(
y∗kx

2
kx

2∗
k yk

1 + ‖x2
k‖2

− y∗kx
1
kx

1∗
k yk

1 + ‖x1
k‖2

)
≥ 0

)

= Pr

(
L∑

k=1

|x2
k|2 − |x1

k|2 ≥ 0

)
where,

x2
k =

x2∗
k yk√

1 + ‖x2
k‖2

and x1
k =

x1∗
k yk√

1 + ‖x1
k‖2

As seen int he previous section, x1
k and x2

k are correlated jointly complex gaussian

random variables (because they are linear combinations of the same jointly com-

plex gaussian random variables). Given that X1 was transmitted, however yk are

independent over k with the effect that x1
k and x2

k with k = 1, 2, ..., L are L indepen-

dent pairs of correlated random variables with mean 0, and the following covariance

matrix.

E







x2
k

x1
k




(
x2∗

k x1∗
k

)

 =




T 2γ2
s |ρk|2+‖x2

k‖2
1+‖x2

k‖2
Tγsρk

√
1+‖x1

k‖2
1+‖x2

k‖2

Tγsρ
∗
k

√
1+‖x1

k‖2
1+‖x2

k‖2
‖x1

k‖2


 =




a′ c′

c′∗ b′




where ρk =
x2∗

k x1
k

Tγs
. Letting zk = |x2

k|2 − |x1
k|2, the characteristic function of zk can be

calculated as

Φzk
(s) =

1∣∣∣∣∣∣∣
I2 + s




a′ c′

c′∗ b′







1 0

0 −1




∣∣∣∣∣∣∣

=
1

(1 + sa′)(1− sb′) + s2|c′|2

Now a′,b′, and c′ take different values under the following 4 cases and hence the

respective characteristic functions for zk are
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1. When ‖x1
k‖2 = ‖x2

k‖2 = Tγs

1−p0
,

Φ1
zk

(s) =
1

(|c|2 − ab)

(
s− (a−b)+

√
(a+b)2−4|c|2

2(|c|2−ab)

)(
s +

−(a−b)+
√

(a+b)2−4|c|2
2(|c|2−ab)

)

where

a =
T 2γ2

s |ρk|2 + Tγs

1−p0

1 + Tγs

1−p0

, b =
Tγs

1− p0

, c = Tγsρk

2. When ‖x1
k‖2 = 0 = ρk and ‖x2

k‖2 = Tγs

1−p0
, Φ2

zk
(s) = 1

1+s Tγs
1−p0+Tγs

3. When ‖x2
k‖2 = 0 = ρk and ‖x1

k‖2 = Tγs

1−p0
, Φ3

zk
(s) = 1

1−s Tγs
1−p0

4. When ‖x2
k‖2 = ρk = ‖x1

k‖2 = 0, Φ4
zk

(s) = 1

Let Mi ⊂ {1, 2, ..., L} denote the indices of the blocks in which case i happens,

with the obvious restriction that |M1|+ |M2|+ |M3|+ |M4| = L and Mi are disjoint

sets. The overall characteristic function for z ,
∑L

k=1 zk is

Φz(s) =
4∏

j=1

∏
i∈Mj

Φj
zi
(s)

=

(
1

1 + s Tγs

1−p0+Tγs

)|M2| (
1

1− s Tγs

1−p0

)|M3| ∏

k∈M1

Φ1
zk

(s)

fZ(z) =
1

2π

∫
exp(sz)Φz(s)ds

=
∑

-ve poles

Res{exp(sz)Φz(s)}

Pr(X1 → X2) =

∫ ∞

0

fZ(z)dz

=
∑

-ve poles

Res{Φz(s)

s
}

It is emphasized that the main difference (between the fading channel and the

AWGN channel) is that the aim of the Viterbi Algorithm is to maximize a sum of

quadratics in the received signals (5.9) and not to minimize the Euclidean distance
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between the received sequence and valid sequences. Thus in the following section

related to the design of asymmetric unitary constellations, it should be emphasized

that correlations (between subspaces spanned by the columns of the transmitted

signal) and not Euclidean distances are considered as the distance notion.

5.3.3 Pairwise error probability (M > 1, N = 1)

We now consider a systems operating with M > 1, N = 1, so that the trans-

mission is now a matrix Xk, where k ∈ {1, 2, . . . , L}. An assumption made to

simplify analysis is that Xk is signal from an unitary space-time signal constellation.

Proceeding in a fashion similar to the last section, the pairwise error probability

in deciding on a sequence X2 = (X2
1, . . . ,X

2
k, . . . ,X

2
L) instead of the transmitted

sequence X1 = (X1
1, . . . ,X

1
k, . . . ,X

1
L) is found to be

Pr(X1 → X2) = Pr

(∑

k∈W

y∗k(X
2
kX

2∗
k −X1

kX
1∗
k )yk > 0|X1

)

= Pr

(∑

k∈W

(‖x2
k‖2 − ‖x1

k‖2) > 0|X1

)

= Pr

(∑

k∈W

z∗k J zk > 0

)

where x1
k = X1∗

k yk and x2
k = X2∗

k yk are column vectors of length M , and

zk =




x2
k

x1
k


 ,J =




IM 0

0 −IM




The covariance of zk is given by the 2M × 2M matrix

Kzk
=




Tγs

M
(IM + Tγs

M
CkC

∗
k) (1 + Tγs

M
)Tγs

M
Ck

(1 + Tγs

M
)Tγs

M
C∗

k Tγs(1 + Tγs

M
)IM



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where Ck =
X2∗

k X1
k

Tγs/M
.The characteristic function of such a Gaussian quadratic (z∗k J zk)is

given by

Φk(s) =
1

|I2M + sKzk
J|

=
1∣∣∣∣∣∣∣




IM + sTγs

M
(IM + Tγs

M
CkC

∗
k) −s(1 + Tγs

M
)Tγs

M
Ck

s(1 + Tγs

M
)Tγs

M
C∗

k IM(1− sTγs(1 + Tγs

M
))




∣∣∣∣∣∣∣

=
1

∏M
j=1

(
s2 T 2γ2

s

M2

(
1 + Tγs

M

)
(λ

(k)
j − 1) + sT 2γ2

s

M2 (λ
(k)
j − 1) + 1

)

=
1∏M

j=1 A
(k)
j (s− q

(k)
j )(s + p

(k)
j )

(5.18)

The simplification of the determinant was obtained by using the determinant identity,
∣∣∣∣∣∣∣




A B

C D




∣∣∣∣∣∣∣
= |D||A−BD−1C|

and subsequently performing the eigenvalue decomposition of CkC
∗
k as U(k)Λ(k)U(k)∗

where Λ(k) = diag(λ
(k)
1 , λ

(k)
2 , . . . , λ

(k)
M ). A

(k)
j , p

(k)
j and q

(k)
j have forms similar to the

expressions in the previous sections. The probability of error is thus

Pr(X1 → X2) =
∑

p
(k′)
j′ >0

Res
s=−p

(k′)
j′

{
1

s
∏

k∈W

∏M
j=1 A

(k)
j (s− q

(k)
j )(s + p

(k)
j )

}
(5.19)

5.3.4 Pairwise probability of error - MIMO case

Adding another spanner into the works, we try to do a performance analysis

similar to the first case of block independent Rayleigh fading with constellations of

the unitary space-time codes for the MIMO case. Specifically we consider M > 1

transmit and N > 1 receive antennas. A space-time signal is said to be transmitted

in the kth block when a complex matrix Xk is transmitted from the M antennas.

Letting the suffix j and the superfix (k) denote the jth receive antenna and the kth
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block, k = 1, . . . , L, respectively, we rearrange the observed matrix in each block as

follows, for convenience in performing the subsequent analysis.

Y(k) = [y
(k)T

1 ,y
(k)T

2 , . . . ,y
(k)T

N ]T , H(k) = [h
(k)T

1 ,h
(k)T

2 , . . . ,h
(k)T

N ]T (5.20)

N (k) = [n
(k)T

1 ,n
(k)T

2 , . . . ,n
(k)T

N ]T , X (k) = IN ⊗X(k) (5.21)

Then (1.3) can be re-written in the new notation as

Y(k) = X (k)H(k) +N (k) (5.22)

Given the signal transmitted in the kth block, Y(k) is CN (Y(k); 0; INT + X (k)X (k)∗
)

distributed. The fading process being block independent, if we observe a sequence

of L blocks, the likelihood function of a sequence of space-time signals {X (k)}L
k=1 is

p({Y(k)}L
k=1|{X (k)}L

k=1) =
L∏

k=1

p(Y(k)|X (k))

=
L∏

k=1

exp{−Y (k)∗(INT + X (k)X (k)∗)−1Y(k)}
πNT |INT + X (k)X (k)∗|

=
exp{−∑L

k=1

(
Y(k)∗Y(k) − 1

1+Tγs/M
Y(k)∗X (k)X (k)∗Y(k)

)
}

(
1 + Tγs

M

)LNT
πLNT

The last step has been derived using the properties of the Kronecker product (⊗), the

properties of the unitary space-time constellation and the matrix inverse identities

listed previously. The Maximum Likelihood Sequence Detector detects that sequence

of space-time signals that maximises Y(k)∗X (k)X (k)∗Y(k). Thus the pairwise sequence

error probability is given by the probability

Pr({X(k)}L
k=1 → {X̂(k)}L

k=1) = Pr

(
L∑

k=1

(
Y (k)∗(X̂ (k)X̂ (k)∗ −X (k)X (k)∗)Y(k)

)
≥ 0

)

(5.23)
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Let us define the following vectors.

zk =



X̂ (k)∗Y(k)

X (k)∗Y(k)


 , z =




z1

z2

...

zL




,J =




IMN 0

0 −IMN




Note that because of the block independence of the fading process the vectors zk are

independent over k. With these definitions the required probability of error is

Pr({X(k)}L
k=1 → {X̂(k)}L

k=1) = Pr(β = z∗(IL ⊗ J)z ≥ 0)

Φβ(s) =
1

|I + sKz(IL ⊗ J)|

where Kz = diag(Kzk
: 1 ≤ k ≤ L) is the covariance (and also correlation) matrix of

the random vector z where

Kzk
= E[zkz

∗
k|X(k)]

=




Tγs

M
(IMN + Tγs

M
C(k)C(k)∗

(
1 + Tγs

M

)
C(k)

(
1 + Tγs

M

)
C(k)∗

(
1 + Tγs

M

)
Tγs

M
IMN


 , where

C(k) =
M

Tγs

X̂(k)∗X(k)

With the structure of the signals assumed, the analysis that continues is similar to

that done in the previous section, with the change that for N > 1, each root in (5.18)

has multiplicity N .

5.4 Asymmetric Unitary Constellations

In [[2]], trellis coded unitary space-time modulations are suggested based on trel-

lis coded modulation systems for the AWGN channel, the difference being the use

of a unitary space-time constellation as the signal constellation. The output signal
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assignment to each transition is made using the Ungerboeck partitioning. In the

Ungerboeck partitioning for the unitary space-time constellations, the ‘distance’ no-

tion used is the average sum of squares of the singular values (δ as in (1.12)) between

2 signal points. This procedure is explained with an example with S = 4 signals in

T = 2 complex dimensions with M = N = 1 and a 2 state, rate 0.5 convolutional

code with overall rate 0.5 bits/sec/complex dimension.

The best unitary space-time constellation is first generated using the systematic

procedure (as suggested by [[29]]) which tries to minimizes the δ over all the constel-

lations. This constellation was found to have the correlation profile as in table 5.1.

Note that δi,j depends only on (i− j) mod S, so that only 4 correlations specify the

Table 5.1: Correlation profile of designed symmetric signal constellation. S = 4
signals in T = 2 dimensions with M = N = 1.

i 0 1 2 3
δi,0 1 0.7071 0 0.7071

entire correlation profile. The worst correlation (between distinct signals) is 0.7071

for differences 1 and 3 (mod 4) and the best correlation is 0 for a difference of 2 mod

4. The Ungerboeck partitioning for this is done as follows. S1 = {0,2} and S2 =

{1,3}. This way the signals with the best correlations are in the same subset - i.e.,

intra-subset correlations are the best possible correlations and worse correlations oc-

cur between signals in different subsets - i.e., inter-subset correlations are bad. This

is analogous to signals with large distances being in the same subset and signals with

smaller distances being in different subsets in the AWGN case.

The trellis code assignment is then done as in Fig. 5.4. As in the symmetric

AWGN example presented earlier, there is no difference if the signals 1 and 3 are

exchanged. The shortest length error event is depicted in the Fig. 5.4 and this path

has the correlations (0,0.7071). This is also the path that has the minimum output
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Figure 5.4: 2 state trellis with output label assignment (symmetric constellation) for
the fading channel. Error events of length 2 and 3 shown.

Hamming distance which actually determines the time diversity of the code. The

upper bound can be written in this case just as in (5.1) with the slight difference that

now the pairwise error probability is the corresponding expression derived in Section

5.3 and not a Q(.) function. The general bound can be written as and specialized

for this example as

Pb ≤
∑

l

d
(l)
h Nl P2(c → e; η) (5.24)

=
∑

l

d
(l)
h Nl P2(ρ1, ρ2, . . . , ρl; η) (5.25)

where P2(ρ1, ρ2, . . . , ρl; η) is the pairwise error probability at the SNR η, for an error

event of length l with correlation ρk at the kth transition. The quantities d
(l)
h , Nl,

and the specific combination of ρi’s are obtained from the transfer function, which

for this case is

T (N, I, D1, D2, D3) =
NI2D2D1

1−NID3

(5.26)

=
∞∑

l=2

N l−1I lD1D2D
l−2
3 (5.27)

∂T (N, I,D1, D2, D3)

∂N

∣∣∣∣
N=1,I=1

=
∞∑

l=2

(l − 1)P2(ρ1, ρ2, ρ3, . . . , ρ3︸ ︷︷ ︸
(l−2)times

; η) (5.28)

where, the exponent of N is the Hamming weight of the input bit sequence that

resulted in the error, the exponent of I is the length of the error event. Dj is

the dummy variable that stands for the correlation between signals 0 and j. The

exponent of Dj refers to the number of times the correlation between signals 0 and
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j occur in the error sequence. This has use in the computation of the exact pairwise

error probability function P2(.).

For the specific example we are considering, the upper bound expression simplifies

to,

Pb ≤
∞∑

l=2

(l − 1)P2(0, 0.7071, 0.7071, . . . , 0.7071; η) (5.29)

At high SNR we can consider the performance to be characterized by the error events

of length 2 and length 3. Under this assumption, the upper bound becomes

Pb . P2(0, 0.7071; η) + 2P2(0, 0.7071, 0.7071; η) (5.30)

In practice, since the pairwise error probability expressions derived in Section 5.3,

were derived only for the cases of distinct ρ’s or equal ρ’s, the ρ’s were slightly

perturbed so as to avoid computational instabilities.

One possible procedure that can be followed to design constellations that we call

in this thesis, Asymmetric Unitary Space-Time signal Constellations is as follows.

First the Ungerboeck partitioning is done as mentioned above. Then one subset say

S2 is taken and a rotation is done as follows.

S′1 = ΘαS1 S′3 = ΘαS3 where α ∈ (−1, 1).

where the Θ is the matrix obtained upon doing a minimization over u1, . . . , uT to

find the smallest δ (see (1.14)). This rotation destroys the cyclic symmetry of the

correlation profile and changes the correlation values as well.

For α = −0.5 the correlation profile is given in table 5.2. For the same output

label assignment the critical path is parameterized by the correlations (0,0.3827)

which is better than (0,0.7071) for the code employing the symmetric constellation.
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Table 5.2: Correlation profile of designed asymmetric signal constellation, α = −0.5.
δi,j 0 1 2 3
0 1 0.3827 0 0.9239
1 0.3827 1 0.9239 0
2 0 0.9239 1 0.3827
3 0.9239 0 0.3827 1

The error path of length 3 has the correlations (0,0.9239,0.3827) which is worse than

the error path with correlations (0,0.7071,0.7071).

For α = −0.2 the correlation profile is given in table 5.3. In this case, the critical

Table 5.3: Correlation profile of designed asymmetric signal constellation, α = −0.2.
δi,j 0 1 2 3
0 1 0.5878 0 0.8090
1 0.5878 1 0.8090 0
2 0 0.8090 1 0.5878
3 0.8090 0 0.5878 1

path is parameterized by the correlations (0,0.5878) which is better than (0,0.7071)

for the code employing the symmetric constellation but slightly worse than (0,0.3827).

However the length 3 error path has the correlations (0,0.8090,0.5878) which is better

than the one for α = −0.5.

At high SNR, if we consider the performance to be determined by the length 2

error event, then we can get an upper bound on the achievable gain by changing

the correlation between signals 0 and 1 from 0.7071 to 0.0. Thus, the length 2 error

event has the correlations (0,0) which is expected to be better than (0,0.7071). The

performance of these three codes and the upper bounds to the bit error probability

are presented in Fig. 5.5.

As expected the performance of the code employing the asymmetric signal con-

stellation is better by about 0.45 dB at 2× 10−4 bit error probability. However this

performance gain is seen only at high SNR and this is what is expected to occur. As
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noticed above, the length 3 error path is best for the symmetric code, a little worse

for the asymmetric code with α = −0.2 and the worst for the asymmetric code with

α = −0.5. The effect of these and higher length error events cause the symmetric

code to perform better at low SNR than the asymmetric codes. It must be stated

that although the values of α were chosen here randomly, the optimum value of α

computed based on the upper bound expression resulted in a performance almost

identical to the one produced by α = −0.2. From the bit-error probability upper

bounds plotted in Fig. 5.5, it is seen that the maximum gain achievable through the

use of asymmetric constellation is 1.5 dB.

Although the gains seen in this case are minimal, it must be understood that the

space over which the modulation design was done was restricted, since the energy of

the signal transmitted by each antenna at any time is 1. We expect that expand-

ing the design space to include modulations that don’t have this restriction might

produce some gain. To do this, one has to move away from creating constellations

from the DFT matrices as done in [[29]]. Using multiple energy level constellations

(analogous to moving from PSK to QAM modulations in the AWGN case) might

give some more gain. Also, as seen from Fig. 5.5, the gains are visible only at high

SNR. For many applications, however, the performance at low SNR may actually be

more important, e.g., Turbo Codes. With a low SNR gain in mind, another asym-

metric modulation scheme involving 4 signals over a 4-state code is produced in the

following section.

5.5 Effect of increasing the state space

The main theme of this procedure is to redistribute resources among the 4 signals

such that there is a gain at low SNR over a symmetric system used with the code in
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Fig. 5.6. The trellis with the output label assignment and length 3 and 4 simple error
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Figure 5.6: 4 state trellis for S = 4 signals in T = 2 dimensions, M = N = 1.
Overall rate 0.5 bps/dimension.

events are shown in Fig. 5.6. For the symmetric constellation with the correlation

profile as in Table 5.1, the length 3 error event has the correlations (0, 0.7071, 0)

and the length 4 error event has the correlations (0, 0.7071, 0.7071, 0). The transfer

function for the trellis in Fig. 5.6 is

T (N, I,D1, D2, D3) =
NI3D1D

2
2 + N2I4D2

2D
2
3 −N2I4D2

1D
2
2

1− (NID1 + N2I3D0D2
3 + NI2D0D1 −N2I3D0D2

1)
(5.31)

= (NI3D1D
2
2 + N2I4D2

2D
2
3 −N2I4D2

1D
2
2)

(1 +
∞∑

l=1

(NID1 + N2I3D0D
2
3 + NI2D0D1 −N2I3D0D

2
1)

l)

(5.32)

where the symbols Di are as explained earlier. From the exact pairwise error deriva-

tions we know that for a given sum of squares of the correlation, the pairwise error

probability is the least when the correlations are equal. From the length 4 error

event, we see that the correlations are (0, 0.7071, 0.7071, 0), i.e., very biased correla-

tions. So, the length 4 error event with the correlations (0.5, 0.5, 0.5, 0.5) would be

better than one with (0, 0.7071, 0.7071, 0). In effect, the ‘distance’ between signals
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0 and 1 and 0 and 3 has to be decreased from 0.7071 at the cost of the ‘distance’

between 0 and 2 and 1 and 3 which are increased from 0. Thus a new asymmetric

constellation can be generated in this form from the symmetric constellation (sys-

tematically) as follows — take signals 0 and 2 (which are initially orthogonal) and

separate them in space on the plane that contains both of them, while bringing the

signals 1 and 3 (again initially orthogonal) closer on the plane which contains these

two signals. Since the correlation between 2 signals depends on the cosine of the

angle between the two, both separating and bringing the signals together (from or-

thogonal positions) has the effect of increasing their correlations. This is done easily

by adding/subtracting a fraction of the difference between the two signals. The par-

ticular fraction used is called α. The signals are normalized once again to have unit

power. The Fig. 5.7 can be used as a visualization aid for this procedure. In the
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Figure 5.7: (a) Symmetric constellation. (b) Construction of Asymmetric constella-
tion

figure, the new un-normalized signals are the primed quantities. The signals 1 and

3 have been brought closer to each other by 2α, i.e., each signal was moved towards
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the other by a fraction α of the length of difference between the signals (it is useful

to think of the signals as vectors). It should be noted that the normalization in the

construction entailed above gives signals in which all components do not have equal

power. However, the total power of the signal is 1.

In bringing the two signals closer, if α = 0.5 is used, then the two signals merge

together, and the constellation becomes 3-ary instead of 4-ary. Given a starting

symmetric constellation, the parameter α is sufficient to specify the asymmetric

constellation. For two particular values, α = 0.2 and α = 0.4, the correlation tables

are given in Table 5.4 and 5.5. In both these constructions, the signals 1 and 3 were

brought closer to each other and the signals 0 and 2 were moved away from each

other.

Table 5.4: Correlation profile of designed asymmetric signal constellation, α = 0.2.
δi,j 0 1 2 3
0 1.0000 0.6509 0.3243 0.6509
1 0.6509 1.0000 0.6509 0.4706
2 0.3243 0.6509 1.0000 0.6509
3 0.6509 0.4706 0.6509 1.0000

For α = 0.2, the length 3 error event has the correlations (0.3243, 0.6509, 0.3243),

and the length 4 error event has the correlations (0.3243, 0.6509, 0.6509, 0.3243).

Thus we see that the length 4 error event has less biased correlations than (0, 0.7071,

0.7071, 0) and performs better, following the observation regarding the pairwise error

probability made earlier in this section. The same holds for longer error events. How-

ever, the length 3 error event does not perform as well, but is not much worse than

the one with correlations (0, 0.7071, 0). At low SNR, since the bit error probability

is determined not only by the first term, but by a number of terms in the expansion

in (5.32), the asymmetric system is expected to perform better at low SNR. At high
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SNR, the length 3 error event dominates and hence the gain should disappear. The

performance results in Fig. 5.8 confirm these expectations.

Table 5.5: Correlation profile of designed asymmetric signal constellation, α = 0.4.
δi,j 0 1 2 3
0 1.0000 0.5061 0.5283 0.5061
1 0.5061 1.0000 0.5061 0.9231
2 0.5283 0.5061 1.0000 0.5061
3 0.5061 0.9231 0.5061 1.0000

For α = 0.4, the length 3 error event has the correlations (0.5283, 0.5061, 0.5283),

and the length 4 error event has the correlations (0.5283, 0.5061, 0.5061, 0.5283).

Thus we see that the length 4 error event has less biased correlations than (0, 0.7071,

0.7071, 0). In fact, these are almost the least-biased correlations possible. Therefore,

the length 4 error event performs better in terms of bit-error probability than the

corresponding one for the symmetric constellation. The same holds for longer error

events. However, the length 3 error event performs much worse than the one with

correlations (0, 0.7071, 0). At low SNR, since the bit error probability is determined

by a number of terms in the expansion in (5.32), the asymmetric system is expected

to perform better at low SNR. In this case however, the performance at high SNR is

not only determined by the length 3 error event but also by the correlation between 1

and 3 (0.9231). The correlation of 0.9231 causes longer error events to have effectively

lower output Hamming distance, i.e., smaller time diversity. Hence at high SNR, this

code is expected to perform much worse than the symmetric case. The performance

results in Fig. 5.8 confirm these expectations.

In the following section, the signal space is increased from 4 to 8 to understand the

behavior of gain from the usage of asymmetric unitary constellations with increasing

signal space. In this case, we only study the signal constellations obtained from the
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Figure 5.8: Simulation results for the T = 2, M = N = 1, S = 4, rate 0.5 trellis
code for the fading channel.



117

first construction method.

5.6 Effect of increasing the signal space

By increasing the modulation size to 8, i.e., 8 signals in 2 dimensions, we are

crowding more number of signals in the same space. This is analogous to increasing

the size M of M -PSK constellations for the AWGN channel. The best symmet-

ric unitary signal constellation obtained by the usual systematic procedure has the

correlation profile given in Table 5.6. The Ungerboeck partitioning is done as the

Table 5.6: Correlation profile of designed symmetric signal constellation. S = 8
signals in T = 2 dimensions with M = N = 1.
i 0 1 2 3 4 5 6 7

δi,0 1 0.3827 0.7071 0.9239 0 0.9239 0.7071 0.3827

following. At the first level, S1 = {0, 4, 2, 6} and S2 = {1, 5, 3, 7}. This is the

best partition possible because the maximum (worst) correlation is eliminated from

the intra-subset correlation. At the second level, S1 and S2 are partitioned into

S11 = {0, 4}, S12 = {2, 6}, and S21 = {1, 5}, S22 = {3, 7} respectively. The trellis

code (hand-designed) that gives the best performance is given in Fig. 5.9, which also

shows the length 3 and 4 simple error events. These two error events are character-

ized by the triplet and quadruplet of correlations (0, 0.7071, 0.3827) and (0, 0.7071,

0.9239, 0.3827) respectively. These correlations are the result of the errors between

the pairs of sequences 0,0,0 and 4,2,1, and 0,0,0,0 and 4,6,3,1, respectively. Thus

for the same trellis structure, if the correlations between 0 and 3 and 0 and 1 are

reduced, then we might get a gain. Using α = −0.1, if we rotate the signals in subset

S2, we get a constellation with the correlation profile as in Table 5.7. For this con-

stellation, the corresponding length 3 and length 4 error events have the correlations

(0, 0.7071, 0.1951) and (0, 0.7071, 0.5556, 0.1951) respectively. So we expect a gain
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Figure 5.9: 4 state trellis for S = 8 signals in T = 2 dimensions, M = N = 1.
Overall rate 0.5 bps/dimension.

Table 5.7: Correlation profile of designed asymmetric signal constellation, α = −0.1.
S = 8 signals in T = 2 dimensions with M = N = 1.

δi,j 0 1 2 3 4 5 6 7
0 1 0.1951 0.7071 0.5556 0 0.9808 0.7071 0.8315
1 0.1951 1 0.8315 0.7071 0.9808 0 0.5556 0.7071
2 0.7071 0.8315 1 0.1951 0.7071 0.5556 0 0.9808
3 0.5556 0.7071 0.1951 1 0.8315 0.7071 0.9808 0
4 0 0.9808 0.7071 0.8315 1 0.1951 0.7071 0.5556
5 0.9808 0 0.5556 0.7071 0.1951 1 0.8315 0.7071
6 0.7071 0.5556 0 0.9808 0.7071 0.8315 1 0.1951
7 0.8315 0.7071 0.9808 0 0.5556 0.7071 0.1951 1
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over the symmetric system. However the gain is expected to be marginal because

the change in the correlation is from 0.3827 to 0.1951 in the length 3 error event,

which does not produce too much improvement. The transfer function for this trellis

(same notation as before) is

T (N, I, D1, D2, D3, D4, D5, D6, D7) =
NI3D1D2D4 −N2I4D1D2D4D7

1− (NID7 + NI2D2D5 −N2I3D2D5D7)

(5.33)

= (NI3D1D2D4 −N2I4D1D2D4D7)

(1 +
∞∑

l=1

(NID7 + NI2D2D5 −N2I3D2D5D7)
l)

(5.34)

The simulation results presented in Fig. 5.10 for these two codes indicate a 0.22

dB gain for the code using the asymmetric signal constellation over the symmetric

signal constellation.

Comparing the performance of the symmetric constellation (S = 4) in Fig. 5.8

with that in Fig. 5.10 (S = 8) reveals that the S = 8 constellation performs better.

The reason for this is that in the case of the code using S = signals, each signal

is repeated once (see Fig. 5.6) and therefore for sufficiently long (≥ 5) error events

some of the correlations become 1. In other words, the effective hamming distance

of these error events is less than the length of the error event. This does not happen

in the S = 8 case as no signal is repeated (see Fig. 5.9). However the S = 8 case is

only slightly better because it has a correlation 0.9239 which is almost as bad as a

correlation 1.
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code for the fading channel.



CHAPTER 6

Conclusions

The main results presented in this thesis are briefly summarized below:

• Two transmission/reception schemes are proposed for fast fading MIMO chan-

nels with increasing degree of sophistication. The first one uses simple pilot-

symbol-assisted schemes based on decomposable constellations, augmented by

turbo-like outer codes. It is shown that this scheme together with a simple

pilot-only demodulator is exactly equivalent to an appropriately degraded per-

fect CSI system. The second scheme uses pilot-assisted modulation and a near-

optimal low complexity receiver algorithm that takes advantage of the signaling

structure to reduce complexity. In examples of systems operating at different

rates, the combination of the pilot-assisted modulation and the low-complexity

demodulation scheme showed the amazing and counter-intuitive result of bet-

ter performance with lower complexity. Although the examples shown above

use orthogonal schemes, only the general structure in (2.43) is required for the

applicability of the proposed low-complexity algorithm.

• The capacity achieving signal distribution for the block-independent Rayleigh

fading channel was partially characterized. The capacity was shown to be de-

termined by the distribution of the amplitude of the input. Further, the said
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amplitude distribution was shown to have bounded support. Following indica-

tions from the literature that the amplitude distribution could be discrete, we

showed that starting from a single amplitude unitary scheme, adding proba-

bility mass to the zero amplitude signal while maintaining the overall average

energy, increases the mutual information. Through numerical simulations, it

was found that at low SNR, this increase is significant.

• Motivated by the capacity results for the case of low SNR and very fast fading

channels, a simple and novel system is proposed that incorporates in an effi-

cient way the transmission of the zero block. Using simulations the potential

of the proposed coding/modulation scheme and decoding techniques is estab-

lished both in terms of performance and in terms of receiver complexity. Some

analysis of the proposed scheme was presented to validate the technique and

to provide projections of the expected gain.

• The concept of joint design of modulation and coding was presented. Specifi-

cally, given a particular trellis code, two design methodologies for constructing

asymmetric unitary space-time constellations were shown. One design tech-

nique suggested here performs better than the symmetric constellation at high

SNR, while the other does better at low SNR. Performance gains (albeit mar-

ginally) were seen over conventional systems without a combined modulation

and code design approach. These marginal improvements are attributed to

the insensitive nature of the pairwise error probability in certain ranges of the

‘correlation’. To predict the performance and to design these codes, pairwise

probability of error expressions were derived for the transmission of a sequence

of space-time signals. For the special case of M = N = 1, closed form expres-
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sions were obtained for a couple of special cases.

Directions for future work and extensions to the above work are listed below:

1. As mentioned above in the conclusions, one counter-intuitive fact that arose

from this work is that pilot-assisted signal constellations perform better than

the corresponding unitary constellations. The reason behind this is yet to

be understood clearly but it relates to the possible sub-optimal nature of the

specific unitary constellation used. Further work needs to be done to determine

the reason for such a gain in performance and complexity and whether and how

better schemes can be constructed.

2. It was shown in Chapter 3 through numerical capacity evaluations, that sub-

stantial gains are to be attained if the zero amplitude is used in conjunction

with unitary signalling for the case of very fast fading. However, a formal proof

of the existence of the zero amplitude in signal distributions that achieve the

capacity of the SISO block fading channel is missing. In a recent work [[43]],

a conjecture was made that for the single antenna block fading channel with

average power constraint, the capacity achieving signal distribution comprises

of unitary signals but with discrete amplitude levels. There is yet no knowledge

of what these amplitude levels are. For that matter, the true capacity of the

SISO channel with non-coherent reception at low SNR and low rates is yet an

open problem. Another important extension is to see whether these results

hold for multiple-antenna systems.

3. The substantial SNR gain indicated by the numerical results in Chapter 3

when using the zero symbol and the fact that some of this gain can be attained

through the simple system that was proposed in Chapter 4, begs the question:
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Are there any system designs that can better harness the shaping gain suggested

by information theory? The reason behind asking this question is that the zero-

parsing scheme suggested in Chapter 4 cannot be analyzed easily for larger

values of L and L0. This in turn raises the question, how well the zero-parsing

scheme with naive soft metrics for determining the zero blocks will perform for

L > 2. On the other hand, the optimal way of determining the bit reliabilities

for Code 1, has complexity that increases swiftly with increasing L for a given

p0. Hence a different strategy must be examined in order to reach closer to

the constrained 2 amplitude level capacity of the channel. The bit sequences

from the turbo like codes are essentially like Bernoulli sequences of 0’s and 1’s

appearing in an equally likely fashion. However information theory suggests

that for some portion of time, the zero symbol must be transmitted while in

the remaining time, the antennas must be used to transmit unitary signals

of a different amplitude. This problem can be formulated as the requirement

of general mapping techniques from Bernoulli sequences to non equiprobable

multi-level signal constellations. Also required is a corresponding de-mapping

technique so that the demodulation procedure has sufficiently low complexity

so as to be implemented. There is some literature [[17]] on this problem which

occurs for instance while attempting to capture the shaping gain in the Additive

White Gaussian Noise (AWGN) channel. by mapping sequences to multi-level

signalling schemes.

4. In all the examples shown in Chapter 2, when compared to the constellation

constrained capacity of the channel, it is found that even optimized irregular

LDPC codes are 1 − 1.5 dB away from the respective constrained capacity

calculations. Part of this gap is due to the finiteness in the codelength for
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the LDPC code. However, such a gap from capacity has been reported by

other researchers [[8]] when using codelengths in the range 64000. A conclusive

explanation for this gap from theoretical limit is an interesting line of research.

For the Binary Symmetric Channel (BSC), the Binary Erasure Channel (BEC),

and the Binary Input AWGN (BI-AWGN) channel, a substantial body of work

exists detailing the construction of turbo like codes that reach as close as tenths

of a dB from capacity. For the Rayleigh fading channel with perfect CSI [[30]]

used density evolution to get the noise thresholds of LDPC codes and further

used this technique to design good irregular LDPC codes. LDPC code design

for the non-coherent fading channel is still in its infancy. The most common

method used for designing LDPC codes for this channel is the use of EXIT

charts. The EXIT chart method essentially tracks the convergence process of

iterative decoding through a single parameter. Although a number of metrics

have been suggested in literature [[51,52]], the most robust and hence the most

commonly used metric is the mutual information between the soft information

output at the end of each (SISO block) iteration and the transmitted bits. The

most common turbo-like system design involves the concatenation of an outer

code and an inner modulation code. At the receiver, one can either perform

(repeatedly) one decoding iteration of the inner code followed by one decoding

iteration of the outer code and repeat this for a specified number of iterations

or repeatedly perform one decoding iteration of the inner code followed by n

decoding iterations of the outer code. When using LDPC outer codes and

the former reception methodology, EXIT charts can be used to design the

LDPC code by combining the variable node decoder of the LDPC decoder

and the inner demodulator/decoder and deriving/computing the input-output
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characteristics of this combined entity. On the other hand, for the second

case, EXIT charts cannot be directly used since now the LDPC decoder has

memory between iterations. This cannot be modelled by an EXIT chart. One

work around to this problem is to describe the EXIT chart for the LDPC

code assuming the use of infinite iterations so that the internal messages have

converged. Since there is no benefit to having the internal messages, the LDPC

decoder can be considered to start afresh. However for the case of finite number

of iterations, EXIT chart based designs must be explored. We call this the

problem of describing EXIT charts for systems with memory and intend to

explore this problem.
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ABSTRACT

CODE AND RECEIVER DESIGN FOR THE NON-COHERENT FAST FADING

CHANNEL

by

Arvind Krishnamoorthy

Chair: Achilleas Anastasopoulos

We consider the problem of communication over a wireless fading channel, when

the channel state information (CSI) is not available at the transmitter and the re-

ceiver. To take the channel dynamics into account, we consider a block independent

Rayleigh fading model. This work deals with the design of coding/modulation and

demodulation/decoding schemes for single- or multiple-antenna systems with focus

on fast to very fast fading channels.

We explore two possible solutions for this channel with increasing degree of so-

phistication. The first one utilizes pilots at the transmitter and a simple and explicit

non-iterative channel estimation algorithm at the receiver. We show that this pilot-

assisted system is exactly equivalent, in terms of performance analysis and design,

to an appropriately “degraded” system having perfect CSI at the receiver. Noting



1

that this simple receiver design can be improved especially for high channel dy-

namics, we propose a family of well-justified and simple suboptimal iterative detec-

tion/estimation algorithms. It is shown that when turbo-like codes are considered in

conjunction with the aforementioned pilot assisted transmission scheme and the pro-

posed receiver algorithm, the unitary constellations investigated in the literature are

inferior to simple pilot-assisted constellations in both complexity and performance.

Specific instances of the proposed systems (that use optimized irregular LDPC

outer codes) are designed. The design examples provided show that the proposed

systems can achieve a good tradeoff between complexity and performance and can

be used to bridge the gap between the high complexity/high performance optimal

scheme and low complexity/mediocre performance non-iterative estimation/coherent

detection scheme.

In order to get a better understanding of the fundamental limitations regard-

ing the transmission over fading non-coherent channels, we attempted to completely

characterize the input distribution that achieves the capacity of the block-independent

Rayleigh fading channel. The mutual information expression for this channel was re-

duced from a multi-dimensional integral to an integral in two real variables that

represent the amplitude of the input and the output, thus determining that the

capacity is completely specified by the input amplitude distribution. Particularly

we show that the capacity achieving input is isotropically distributed, unitary and

has an independent amplitude distribution that has bounded support. Based on a

well-founded conjecture in the literature that the amplitude distribution is discrete,

we show also that starting from a single amplitude scheme, adding some probability

mass to the zero amplitude increases the mutual information achieved. This fact is

illustrated through numerical evaluations as well.
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Finally, the code design problem for very fast fading channels is considered and

based on the information theoretic analysis, a novel system design that incorporates

the zero mass point is proposed. Through constrained capacity analysis and Monte-

Carlo simulations, this system is shown to provide some of the gain promised by the

information theoretic analysis. Simulations of the proposed system report at least

0.55 dB gain over conventional systems with no additional complexity.


